긴 인식 거리를 가진 Yagi-Uda 형태의 UHF RFID Tag 안테나

이경환, 김구조, 정유정
대구대학교 정보통신공학과
asaph@daegu.ac.kr, gikim76@daegu.ac.kr, youchung@daegu.ac.kr


Kyoungwhwan Lee, Goojo Kim, You Chung Chung
Information and Communication Engineering Dept., Daegu University

요 약

긴 인식 거리를 가진 Yagi-Uda 형태의 RFID Tag를 설계하여 태그를 설계하였다. 리더 안테나의 방향형 방식(Effective Isotropic Radiated Power)을 무한히 높일 수 없어서 태그의 인식 거리는 한계가 있다. 이 한계를 보완하기 위하여 좋은 지향성과 긴 인식 거리를 가진 태그 설계가 필요하다. 여기는 Yagi-Uda 안테나의 형태를 RFID 태그에 접착 시키게 설계하고 제작하여 패턴과 인식 거리의 값 비교하였다.

1. 서론

리더(Transponder) 그리고 컴퓨터로 구성된 RFID(Radio Frequency Identification) 시스템에서 Transponder는 안테나와 RFID IC침으로 구성되어 있으며, UHF 리더는 변조된 신호를 리더에 안테나를 통하여 전송하여 수동형(Passive) 태그에 전자기 전자가 방식으로 (Electromagnetic backscattering) 계측을 공급하면서 전자기의 데이터를 추출한다[1]. 태그는 리더의 데이터를 포함한 전자과 신호에서 필요한 모든 메타데이터를 받는데, 이 때 태그는 교환된 신호로부터 전자의 데이터 영역 속으로 UHF 주파수에서 태그의 안테나를 통하여 리더에게 다시 보내게 된다. 즉 태그 안테나의 의도로부터 받은 메타데이터의 일부를 다시 보내게 하는 것이다[2-4]. 따라서 대부분의 리더 장비는 원형 패턴, omni-direction beam pattern, 그리고 안테나에서 지향성의 전방 최대 방향의 값과 후방의 값 간의 비어 전하비가 높아야 한다[5].

RFID IC 칩의 임킨스턴은 RFID 칩의 기기를 개발하고 있는 소프트웨어와 운영체계를 가진다. 따라서 안테나 임킨스턴은 칩 임킨스턴과 공제할 수 있는 시스템이다. 그리고 현재 수많은 RFID킹은 각각 다른 임킨스턴을 가지고 있기 때문에 각 사용량 RFID 칩 임킨스턴에 맞추어 안테나를 제작하여야 한다. 본 논문에서 시뮬레이션과 제작에 사용된 임킨스턴 칩 임킨스턴은 Alien사의 Gen1 칩이다.

RFID의 사용되는 분야는 자동공정장치 시스템(Electronic Toll Collection), 재산증명, 소매 물류 관리, 출입 통제, 물류 추적, 그리고 자동차 보안과 같은 분야에서 활용되고 있다[6], 그리고 표준으로는 ISO 18000 계열, Class 0, Class 1 Gen1, Gen2 등을 사용하고 있다.

ISO18000-6에 따르면 UHF RFID 주파수 범위는 865-960MHz이며, 각 나라들은 각각 자기국가의 RFID 주파수를 할당 되었다. 예를 들어 유럽은 865-868MHz, 미국과 캐나다는 902-928MHz 그리고 한국은 908.5-914MHz이다.


HF3(30MHz), VHF(30〜300MHz) 그리고 UHF(300〜1GHz) 범위에 서 매우 실용적인 형태의 안테나가 바로 Yagi-Uda 안테나이다. 이 안테나는 전방 다이얼 소자들로 이루어져 있으며, 이들 중 하나는 금전 전자공학에 의해서 적절에 메타데이터를 공급받는 반면에 다른들은 쌍방향에 의해 전류가 유기되어 기지소자로서 작동한다. 여기서 안테나의 가장 일반적인 금전 소자는 파워드 다이얼들이며, 이 방식의 전방으로 방향형 혼합 안테나를 동작하도록 설계되어 있으며, 이것은 전방 방향에 있는 기관소자들을 도표로 동작하게 함으로써, 후방 방향에 있는 소자들은 방사기로 동작하게 함으로써 전체 방향으로 범을 보낼 수 있다. Yagi는 이들 도표를 올 ‘전과 도달(wave cannel)’이라고 명명하였다[13].


안테나 설계는 Particle Swarm Optimization을 사용한 여기-와-대 이 선형[16], Coupled Yagi-Uda array [17], Microstrip Yagi antenna [18], V-dipole를 이용한 Yagi antenna [19]을 소개하고 있다.

2장에서는 Yagi-Uda 형 태그 안테나의 시뮬레이션을 통해서 안테나 의 변화에 대한 이익과 패턴에 대해서 논의할 것이고, 3장에서는 2장에서 시뮬레이션한 안테나를 제작하여 인식 거리를 측정하고 안테나의 패턴을 측정하여 실험 결과와 시뮬레이션한 값을 비교 하였다. 설계한 안테나의 중심주파수는 910MHz, 그리고 설계된 Ansoft사의 HFSS를 사용하여 설계 하였다.

2. Yagi-Uda RFID Tag 안테나 설계

이기-와-대 안테나의 모양을 기초로 각 소자들의 위치, 전방, 소자간의