THE PURPOSE OF THE STUDY WAS TO EVALUATE THE ANTIMICROBIAL EFFECTIVENESS IN VITRO AND FORMING ABILITY OF THE VOLATILE GAS OF THE NON SPECIFIC ENDODONTIC MEDICAMENTS

Boung Soon Min, D.D.S., Ph. D., Ho Young Choi, D.D.S., Ph. D.

Dept. of Operative Dentistry, School of Dentistry Kyung Hee University,

Abstract

The results were obtained as follows:
1. Formocresol produced the widest zone of inhibition and camphorated para-chlorophenol was the next and eugenol was the narrowest.
2. Formocresol revealed the most effective forming ability of the volatile gas and camphorated para-chlorophenol was the next and eugenol was the least.
3. In comparing with the weight per ml. of the tested medicaments, eugenol was 1039.99mg/ml.
4. The amount of saturation in filter paper disc camphorated para-chlorophenol showed the most and euglnol showed the least.

I. 結 論

오늘날 根管治療에서 感染된 根管를 滅菌시키는데 있 어 Aberbach와 Stewart에 依하여 正確한 根管器 械操作 mechanical debridement과 根管洗浄Instance로도 約 75% 以上을 滅菌시킬 수 있는 것이 實験을 通じ서 確認되었지만 아직도 臨床에서 根管薬物治療剤가 重要한 位置を 持ち하고 いる는 事実에는 疑心할 餘地가 없다. 根管薬物治療剤를 大別하여 보면 irrigation solution으로 使用되는 薬物과 intracanal dressing으로
A) Experimental Materials

1. Experimental material: Streptococcus mitis (Kane宏大堂大学 医科大学 微生物学教室 保管豆腐)
3. Medium (2): Brain heart infusion broth agar medium 1.5% 加かも 生理的食塩水 3 g 洗浄液 人血 (human blood) を 5% 加えて得る 培地。
4. 供試紙: 4 mm 直径 1.5 cm
5. 化学天空: Ainsworth Type SCN.
6. Experimental drugs:
 - Formocresol (from 日村研究所製品)
 - Camphorated Parachlorophenol (from 日村研究所製品)
 - Eugenol (from 昭和製品化株式会社製品)
7. Cylinder formed plastic dishes (10 mm x 7 mm per dish)

B) Experimental Methods

本実験は 體外で 2g of 方法で 半数 対数だけ 数名

<table>
<thead>
<tr>
<th>Inhibition zone (cm)</th>
<th>Weight (mg)</th>
<th>Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.24</td>
<td>0.072</td>
</tr>
<tr>
<td>2</td>
<td>7.34</td>
<td>0.072</td>
</tr>
<tr>
<td>3</td>
<td>7.10</td>
<td>0.072</td>
</tr>
<tr>
<td>4</td>
<td>7.01</td>
<td>0.070</td>
</tr>
<tr>
<td>5</td>
<td>7.13</td>
<td>0.072</td>
</tr>
<tr>
<td>6</td>
<td>7.06</td>
<td>0.072</td>
</tr>
<tr>
<td>7</td>
<td>6.83</td>
<td>0.072</td>
</tr>
<tr>
<td>8</td>
<td>7.04</td>
<td>0.072</td>
</tr>
<tr>
<td>9</td>
<td>7.03</td>
<td>0.072</td>
</tr>
<tr>
<td>10</td>
<td>7.02</td>
<td>0.071</td>
</tr>
<tr>
<td>Mean ± S.D.</td>
<td>7.14 cm ± 0.13</td>
<td>69.77 mg ± 0.85</td>
</tr>
</tbody>
</table>
Table 2. In vitro antimicrobial tests of camp-horated parachlorophenol

<table>
<thead>
<tr>
<th>Inhibition zone</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0cm</td>
<td>73.50mg</td>
</tr>
<tr>
<td>2</td>
<td>3.1cm</td>
<td>73.70mg</td>
</tr>
<tr>
<td>3</td>
<td>3.2cm</td>
<td>74.42mg</td>
</tr>
<tr>
<td>4</td>
<td>3.1cm</td>
<td>72.98mg</td>
</tr>
<tr>
<td>5</td>
<td>3.0cm</td>
<td>72.56mg</td>
</tr>
<tr>
<td>6</td>
<td>3.2cm</td>
<td>73.99mg</td>
</tr>
<tr>
<td>7</td>
<td>3.2cm</td>
<td>75.13mg</td>
</tr>
<tr>
<td>8</td>
<td>3.0cm</td>
<td>73.13mg</td>
</tr>
<tr>
<td>9</td>
<td>3.1cm</td>
<td>72.57mg</td>
</tr>
<tr>
<td>10</td>
<td>3.3cm</td>
<td>74.24mg</td>
</tr>
<tr>
<td>Mean</td>
<td>3.12cm</td>
<td>73.62mg</td>
</tr>
<tr>
<td>±S.D.</td>
<td>±0.12</td>
<td>±0.84</td>
</tr>
</tbody>
</table>

Table 3. In vitro antimicrobial tests of Eugenol

<table>
<thead>
<tr>
<th>Inhibition zone</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3cm</td>
<td>68.11mg</td>
</tr>
<tr>
<td>2</td>
<td>2.3cm</td>
<td>68.50mg</td>
</tr>
<tr>
<td>3</td>
<td>2.4cm</td>
<td>69.15mg</td>
</tr>
<tr>
<td>4</td>
<td>2.2cm</td>
<td>67.20mg</td>
</tr>
<tr>
<td>5</td>
<td>2.5cm</td>
<td>69.80mg</td>
</tr>
<tr>
<td>6</td>
<td>2.3cm</td>
<td>68.50mg</td>
</tr>
<tr>
<td>7</td>
<td>2.3cm</td>
<td>68.11mg</td>
</tr>
<tr>
<td>8</td>
<td>2.2cm</td>
<td>68.42mg</td>
</tr>
<tr>
<td>9</td>
<td>2.5cm</td>
<td>69.25mg</td>
</tr>
<tr>
<td>10</td>
<td>2.4cm</td>
<td>68.57mg</td>
</tr>
<tr>
<td>Mean</td>
<td>2.34cm</td>
<td>68.57</td>
</tr>
<tr>
<td>±S.D.</td>
<td>±0.11</td>
<td>±0.72</td>
</tr>
</tbody>
</table>

The table shows the results of in vitro antimicrobial tests for camp-horated parachlorophenol and Eugenol. The inhibition zone, weight, and volume are recorded for each sample. The data indicate the efficacy of these compounds against microbial growth.

Table 4. Weight per ml. of endodontic medicaments.

<table>
<thead>
<tr>
<th></th>
<th>Formocresol</th>
<th>Camphorated parachlorophenol</th>
<th>Eugenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>977.30mg</td>
<td>948.25mg</td>
<td>1037.10mg</td>
</tr>
<tr>
<td>2</td>
<td>962.72mg</td>
<td>959.85mg</td>
<td>1052.22mg</td>
</tr>
<tr>
<td>3</td>
<td>983.20mg</td>
<td>942.70mg</td>
<td>1042.50mg</td>
</tr>
<tr>
<td>4</td>
<td>975.40mg</td>
<td>952.00mg</td>
<td>1032.82mg</td>
</tr>
<tr>
<td>5</td>
<td>968.00mg</td>
<td>932.37mg</td>
<td>1035.00mg</td>
</tr>
<tr>
<td>Mean</td>
<td>973.32</td>
<td>947.03mg</td>
<td>1039.99mg</td>
</tr>
<tr>
<td>±S.D.</td>
<td>±8.04mg</td>
<td>±10.51</td>
<td>±7.69</td>
</tr>
</tbody>
</table>

Table 4 provides the weight per ml of different endodontic medicaments: Formocresol, Camphorated parachlorophenol, and Eugenol.

B) 水力試験

試験薬物を化学装置にセットし、最大の湿度を測定した後、試験薬物として0.1mgの重量を一定時間保持した。試験薬物の水力試験において、各々の実験結果は時間に対して減少する傾向にありました。実験の温度は20°Cで行った。

Table 5. In vitro forming ability of the volatile gas of the endodontic medicaments (Decreased weight/ml Time/sec)

<table>
<thead>
<tr>
<th>F.C.</th>
<th>C.P.</th>
<th>Eugenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1mg</td>
<td>0.1mg</td>
<td>0.1mg</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>2.8sec</td>
<td>11.2sec</td>
</tr>
<tr>
<td>±S.D.</td>
<td>±0.8</td>
<td>±1.8</td>
</tr>
</tbody>
</table>

Table 5 illustrates the in vitro forming ability of volatile gas from different endodontic medicaments: F.C., C.P., and Eugenol.
IV. 總括 및 考察

지금부터 約 30여년前에 Appleton27 같은 사람들은 無菌의 治療成敗与否는 根本의로 植管내에 異常菌細菌を 如何に除去할 수 있는か에 左右한다고 訳명하였다. 그러나 오늘날 많은學者들의 研究결과를 分析하여 보면 植管治療의 成敗与否는 全의으로 異常菌根 管内の 異常菌的 存在与否에 달려있다고는 못される라는 見解가 合理의이다. 植管治療의 成敗与否에 對하여 Ingle28)은 1955.9.부터 数年間에 걸쳐 行한 Washington 齒科大学의 研究研究에 依하여 植管治療失敗의 가장 큰 原因은 不完全한 植管密閉(88.66%)과 齒棒穿孔(9.61%)이라고 報告하였다. 勿論여기에 植管의 異常菌의 存在与否에 依한 결과는 包含시키지 않았다. 이는 植療研究의로 Rhein, Krensos와 Gies89)에 依하여 植管이 不次の是 異常菌에서 植療을 行하여 植管が BUS 異常菌에서 植療을 行하여 植管治療의 失敗를 行하여 植療研究 결과 15.2%가 5.9%이라고 報告하였다.

更に 體外(in vitro)実験の 結果로 體内効力(in vivo efficency)を 推測하기도 하여 多少의 問題点이 의문적 것으로 生存 되었다. 藥物와 Strepitococcus-ser의 相互作用에 多く 物理的인 要素와 化学的인 要素가 複合되어 있 것으로 推測 되었다. 于先 藥物에 따라 分子의 크기, 摘散度及 安定性에 多く의 依異가 있을 것이며 이는 藥物의 性質에 따라 作用機轉에도 若干의 依異가 있을 수 있을 것이다.

於此実験結果들은 體外(in vitro)에서 作用하

れる機轉으로 児童의 齒牙within 生存하여 依

する機轉과는 依異가 있을 것으로 生存 되었다.

故而 體内에서는 藥物의 気化力を 體外(in vitro)で

次比較하여 본 것이다. 本実験薬物에 따라 ml당 0.1

mg의 重量이 減少 되지는 時間이 依異有差異가 있

울을 見得할 수 있었다. これは 다시 行かれる 気化力

が 依異한 植管薬剤의 唯一 依異が 減少 되저서 依異

る 時間이 短縮되어가리고 할 수 있을 것이다.

於此実験の 結果에서는 F.C.가 가장 強力한 気化力を

 나타났고 그 다음이 C.P., Eugenol 依順になった。 本実

験で Eugenolは F.C.와 C.P.에 비하여

 낮은 気化力가 있는 唯一의 依異が 依異하고 있다。

勿論 人體내에 있는 齒牙에 依하여

実験한 것

이 아닌 依異에 體内의 温度と 温度에

於ける 唯一의 依異가 依異한 것으로 依異하여 3가지

薬物들을 比較実験하였다。 本実験で 依異는 Eugenol이 1039.99mg/ml로 가장 무게있고, F.

C.가 973.32mg/ml로 그 다음이었고, C.P.가 947.03

mg/ml로 가장 가벼웠다.

V. 結論

體外(in vitro)에서 3가지 實驗薬物들을 實験하여

 다음과 같은 結論을 얻었다

1. F.C가 가장 큰 抑制部位を 나타났고 그 다

음이 C.P. Eugenol 依順序었다。

2. 気体生成 能力는 F.C가 가장 強力하였고 그 다

음이 C.P. 依順序이고 Eugenol가 가장 낮았다。

3. ml당 重量 Eugenol이 1039.99mg/ml로 가장 무
References

