Chemical Control of Damping-off of Ginseng Caused by *Rhizoctonia solani*

Lee* C.H. J., Kim*, H.W. Bae*

Abstract

1. The trials were planned to test ten different fungicides for the control of ginseng damping-off caused by *Rhizoctonia solani* in the laboratory and in the field.

2. Fungicidal activity was tested by soil trenching in test tube in the laboratory and with seedlings in the seedbed naturally and artificially infested with damping-off organisms.

3. Promising chemicals to control damping-off of ginseng without marked phytotoxicity were Homai, Captan, Validamycin, and Tachigaren.

Materials and Methods

* Test materials: *Panax ginseng* (C.A. Meyer)

* Test fungicides: 8 types of PCNB

* Test strains: 24 strains of *Rhizoctonia Solani* with different virulence

Table 1. Fungicides used and their active ingredients

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Active ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNB</td>
<td>Pentachloro nitro benzene</td>
</tr>
<tr>
<td>Sicarol</td>
<td>2-methyl-5,6 dihydro-4-H-pyran Carboxylic acid anilide</td>
</tr>
<tr>
<td>Tachigaren</td>
<td>3-hydroxy-4 methyl isoxazole</td>
</tr>
<tr>
<td>Captan</td>
<td>N-trichloromethyl thio-4-cyclohexene 1,2-dicarboximide</td>
</tr>
<tr>
<td>Topsin M</td>
<td>1,2-bis (3-methoxy carbonyl-2-thioureoide) benzene</td>
</tr>
<tr>
<td>Homai</td>
<td>Thiophane-m tetra methyl</td>
</tr>
<tr>
<td>Blamycin</td>
<td>Streptomycin sulfate</td>
</tr>
<tr>
<td>Validamycin</td>
<td>Validamycin-A</td>
</tr>
</tbody>
</table>

Table 2. Effect of fungicides on radial growth of R. solani tested by drench method in laboratory

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Radial growth (mm) at 10,000ppm</th>
<th>1,000</th>
<th>100</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNB</td>
<td>35</td>
<td>24</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>Homai</td>
<td>19</td>
<td>28</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Blamycin</td>
<td>25</td>
<td>31</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>Validamycin</td>
<td>0.5</td>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Tachigaren</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>Sicarol</td>
<td>16</td>
<td>24</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Captan</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>Topsin M</td>
<td>33</td>
<td>39</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Zimaneb</td>
<td>23</td>
<td>26</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Control</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 3. Effect of fungicidal seed treatments on damping off of ginseng seedlings in soil infested with R. solani

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>% of seedlings emerged*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNB</td>
<td>69 XY</td>
</tr>
<tr>
<td>Captan</td>
<td>61 Y</td>
</tr>
<tr>
<td>Zimaneb</td>
<td>57 Y</td>
</tr>
<tr>
<td>Homai</td>
<td>72 X</td>
</tr>
<tr>
<td>Control</td>
<td>3 Z</td>
</tr>
</tbody>
</table>

*a: Means followed same letter are not significantly different at the 5% level of L.S.D. test.

하여 Zentmyer에의 화약법을 마다 있으며 高壓殺菌에 砂壇土 10개를 訓練 (20×180mm)에 넣고 PDA 培地에 서 1週間 培養된 培養菌에 가장자리에서 靈 микро 直徑 1mm의 供試菌을 Disc을 訓練管의 土壤面에 올려놓고 그 위에 같은 土壤 10개를 점았다. 그리고 藥剤懸濁液은 1個訓練管에 5ml씩 넣고 密封한 다음 26±2℃의 恒溫器에 24時間 培養하다가 另isc을 培養菌を 染め殺菌水을 印か 矛菌懸濁液을 螢菌管에 落下한 後 PDA 培地에 올려 놓아 種子의 生長半徑으로 藥剤를 比較하였다.

2) 풀트試験

가) 試験予定12時間 聚菌水에 混練, 茎菌을 落下한 後 Captan 0.15%, Zimaneb 0.25% 液에 10分間 투여한 Homai는 0.5%液에 6時間 浸漬消毒하고 PCNB는 種子 무게의 1%営衣消毒을 했다.

나) 高壓殺菌에 土壤에 PDA 培地에서 1週間 培養된 菌を 混合하고 (培養菌 20尾培養土 1kg) 1個 恒温器 (20×12×6cm) 1kg을 넣고 種子 40粒を 播種하였 다.

3) 培養試験

가) 播種

1次는 75년 11월 10日 半割直苗로 播種 4週日 前에 病原菌を 土壤 15cm 깊이로 混和 播種한 後 播種하였으며 2次는 76년 11月中旬 病原菌を 播種하지 않은 殖苗 培地에 播種했으며 기타栽培는 僅行栽培法에 擬했다.

나) 藥剤處理

種子消毒은 播種直前聞 5% 酒精에, 土壤懸濁는 播種 1週前에 土壤 15cm 깊이로 그리고 土壤懸濁는 種子 萌芽 前後 4次 (1回 均等 14) 处理 했다.

結果 및 考察

가) 室內試験

供試薬剤의 決菌力を 調査하기 위하여 試験管(20×180mm)을 使用하여 10, 100, 1,000, 10,000ppm의 濃
Table 4. Effects of chemicals on damping-off of ginseng seedlings applied to soil or on seed in field infested with R. solani

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dilution or amount</th>
<th>% of seedlings survived</th>
<th>fresh wt. of root (g)</th>
<th>Phytoxicity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drymix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNB</td>
<td>12g/m²</td>
<td>72</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Validamycin</td>
<td>180g/m²</td>
<td>70</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Seed treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNB</td>
<td>1% /seed</td>
<td>65</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>3% /seed</td>
<td>61</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Zimaneb</td>
<td>1 : 400</td>
<td>52</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Drench</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validamycin</td>
<td>1 : 1,000</td>
<td>68</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Blamycin</td>
<td>1 : 1,500</td>
<td>52</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Captan</td>
<td>1 : 400</td>
<td>56</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Tachigaren</td>
<td>1 : 1,500</td>
<td>59</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Sicalor</td>
<td>1 : 700</td>
<td>63</td>
<td>0.21</td>
<td>++</td>
</tr>
<tr>
<td>Zimaneb</td>
<td>1 : 400</td>
<td>54</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>26</td>
<td>0.47</td>
<td>-</td>
</tr>
</tbody>
</table>

*: Not visible, ++: light, +++: severe

표 2에서 보는 바와 같이 1,000, 10,000ppm의 농도에서 Validamycin, Tachigaren은 환색 생장은 완전 또는 거의 억제시켰고 100ppm의 농도에서는 10%에 의해 유발되는 다른 증상을 보이지 않았다. PCNB가 R. solani에 의한 모란률병 재배에 가장 효과적인 것은 이미 알려진 사실이다. 본 실험에서 (무시함)의 재배율 밖에 나타나지 못한 것은 증증의 생장이 모란률병으로 사라지고 운동을 억제시킨 후에도 증증이 농번 기 때문인데 환색 현상에도 별에 그 효과를 높이할 수 있다는 이유로 (35) 기인한 것으로 생각된다.

나. 쓰어부진
모란률병은 접종한 화분에 식약 및 미생물질을 종은 나무로 접종한 재배율을 실험하였다. 재배율의 재배율이 3%인 대비에 비해 재배율의 재배율은 57%이상이며 특히 homai의 경우 72%로 가장 높은 재배율을 보였다. 실내 재배율 실험에서 homai나 captan의 재배율이 풍부를 증가하지 않았으나 재배율의 경우 PCNB와 비슷한 재배율을 보였다.

다. 항병시험
모란률병은 접종한 화분에서 재배율을, 재배율로, 재배율과 재배율로는 Validamycin, 재배율로는 captan, 그리고 재배율로는 Validamycin이 재배율 및 재배율에서 효과가 좋았다. Sicalor은 미나가에 나타난 찾을 알리는 효과로 Tachigaren의 경우 안전성에서의 간 연화가 매우 높았으나 재배율에서 유해성을 보였기 때문에 이를 건전히 재배율을 억제시킨 것인가할 수 있도록 재배율을 보았다. 올바른 1% 재배율의 결과를 도태로 76%의 재배율은 상당히 높고, 자연 상태의 재배율

Table 5. Fungicides used and their dilution rate or amount.

<table>
<thead>
<tr>
<th>Fungicide</th>
<th>Dilution or amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drymix</td>
<td></td>
</tr>
<tr>
<td>Tachigaren</td>
<td>30g/m²</td>
</tr>
<tr>
<td>Captan</td>
<td>30g/m²</td>
</tr>
<tr>
<td>Validamycin</td>
<td>60g/m²</td>
</tr>
<tr>
<td>PCNB</td>
<td>12g/m²</td>
</tr>
<tr>
<td>Seed treatment</td>
<td></td>
</tr>
<tr>
<td>Homai</td>
<td>1 : 200</td>
</tr>
<tr>
<td>Captan</td>
<td>3% /seed</td>
</tr>
<tr>
<td>PCNB</td>
<td>1% /seed</td>
</tr>
<tr>
<td>Soil drench</td>
<td></td>
</tr>
<tr>
<td>Validamycin</td>
<td>1 : 1,000</td>
</tr>
<tr>
<td>Captan</td>
<td>1 : 500</td>
</tr>
</tbody>
</table>

모란률병의 재배율은 Sicalor, Tachigaren에 의한 모란률병 재배율에 비해 재배율이 가장 높았고, 재배율로, 재배율로는 Validamycin, 재배율로는 captan, 그리고 재배율로는 Validamycin가 재배율 및 재배율에서 효과가 있었다.
Table 6. Effect of fungicidal treatment on damping-off of ginseng seedlings tested by various methods in field.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Drymix</th>
<th>Seed treatment</th>
<th>Drench</th>
<th>% of seedlings emerged**</th>
<th>fresh wt. of root (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachigaren</td>
<td>Captan</td>
<td>Captan</td>
<td>Captan</td>
<td>72 ab</td>
<td>1.04</td>
</tr>
<tr>
<td>Captan</td>
<td>Captan</td>
<td>Captan</td>
<td>77 a</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Homai</td>
<td>Homai</td>
<td>Validamycin</td>
<td>70 ab</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Validamycin</td>
<td>Validamycin</td>
<td>Validamycin</td>
<td>68 b</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Validamycin</td>
<td>Homai</td>
<td>Validamycin</td>
<td>82 a</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>PCNB</td>
<td>PCNB</td>
<td>PCNB*</td>
<td>69 b</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td>31 c</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

* PCNB was incorporated with sand at the ratio of 1 to 10 and applied inter plant.
** Means followed same letter are not significantly different at the 5% level of L.S.D. test.

4. 摘 要

가. 人参科의 모거나는을 防除하기 위하여 10種의 藥剤을 供實験하여 室內 및 園場試験을 實施하였다.
나. 供試薬剤의 効果을 調査하기 위하여 室內에서 土壤培養으로 그리고 園場에서는 모거나는病菌을 실시적으 로 植雑한 園圃에서 自然雑菌狀態의 園圃에서 種子 殖種, 土壤消毒, 土壤灌溉法으로 處理하였던바.
다. 모거나는 解除을 위해 가세되는 藥剤로는 Homai, Captan, Validamycin, Tachigaren 등이 있다.

인 용 문헌

2. 정주성, 1972, 인삼의병래, 한국 생약 학회지 2:73–79
3. 정주성, 1976, 인삼 모거나는 방제에 관한 연구, 전미 기술 연구소 용역 보고서
12. 문득재, 1967. 악송 인삼의 병해충과 방제법, 일본 장야 시험장 보고서