3점 굽힘시험에 있어서 AE, 초음파, 크랙레이지법의 비교연구

한 응교** · 김경석*** · 박준서***

A Study on Comparison of Acoustic Emission, Ultrasonic Testing and Crack Gauge Method in 3-point Bending Testing

E. K. Han, K. S. Kim and J. S. Park

Abstract Comparison of acoustic emission, ultrasonic testing and crack gauge in 3-point bending testing have been studied. As the results, COD is indirectly assumed by strain gauge rate and grid pitch width when crack gauge grid is out. Acoustic emission is qualitatively able to measure crack growth by total count but ultrasonic testing has a difficulty in measuring it because of echo height fluctuation according to the change and pressure of UT probe.

1. 서 론

재료의 파괴에 따른 현상을 정량적으로 평가하려는 의미에서 파괴현상의 측정과 이것을 이용한 재료평가는 구조물의 설계나 구조평가에 반드시 필요한 기초적 데이터를 제공하고 공학적으로 대단히 중요한 의미를 갖고 있다.

파괴역학적 수법에는 주로 선형파괴역학적 수법이나 단순성 파괴역학적 수법 예를 들면 J_c시험법 등이 널리 이용되고 있으며 될 수 있는 한 적은 시간에 의해 정확한 균열 발생점을 검출할 수 있도록 하는 것이 바람직하다.

이와같은 조건을 만족하는 연구수법으로서 재료의 파괴과정에서 내부에너지의 일부가 탄성파의 형태로 방출되는 현상을 이용한 Acoustic emission3-8 방법과 재료에 초음파9-10를 발생시키게 재료의 파괴가동을 암시하려고 하는 시도가 선진국에서 이루어지고 있다.

그러나 파괴의 전진에 따른 재료의 가동이 수동적인 상태에서 계속적으로 In-Process감시할 수 있는 AE 방법과 동동적으로 초음파를 발생시켜 결정의 위치를 검출하는 초음파법은 그 검출정보에 있어서 차이가 있다고 생각되나 두 분야가 각각 연구되고 있을 뿐으로 서로 비교 연구되지 않는다고 있는 실정이다.

이에 본 논문에서는 기초연구의 일환으로 가장 일반적으로 사용되고 있는 연구에 대해서 3점 굽힘시험에 있어서 노치 선단에 부착한 크랙레이지로서 크랙의
진행과정에 따른 \(\text{Strain} \)값을 검출함으로써 COD를 구하는 법을 제안해 보았으며 동시에 AE \text{total count}와 \text{RMS}값 그리고 초음파 사각탄상에 의한 \text{Echo}높이를 비교함으로써 크랙의 진행에 따른 COD검출정도를 비교해 보면서 두 방법간의 차이점을 알아 보았다.

2. 이론

2.1 크랙이자에 대한 COD 측정법
파괴력학은 실제 구조물중에 존재하는 균열의 기동을 정량적으로 취급하는 것이고 균열크랙 상태는 음력확대계수 \(K \) 또는 탄소성 파괴인성값 \(J \)라는 단일의 파라미터로 표현할 수 있다. 여기서 \(K \) 또는 \(J \)는 균열을 포함한 부재에 걸리는 음력이나 부재의 형상 또는 균열의 길이 등에 의해 계산되고 이 값이 같은 균열크랙은 모두 같은 상태에 있다고 다루고 있다.

Fig. 1은 새로운 균열크랙을 도식적으로 보인 것으로 간류 음력 또는 부하음력이 존재하는 경우에는 균열크랙이 소성변형에 의해 열려 반원상으로 된다.

![stress \(\sigma \)]

Plastio zone

stress \(\sigma \)

Fig. 1 Schematic of crack tip.

Fig. 1중의 \(\delta \)라 보인 장소는 \text{CTOD} (Crack Tip Opening Displacement)라 부르고 반원상의 직경에 상당하기 때문에 이 \(\delta \)로서 균열크랙의 크기를 취급할 수 있다. 파괴력학의 공식을 사용하면

\[
\delta_t = \frac{K^2}{2E\varepsilon_r} \quad \cdots (1)
\]

\[
\delta_t = 0.4\frac{J}{\sigma_r} \quad \cdots (2)
\]

여기서 \(E \) : \text{Young률} \(\sigma_r \) : \text{항복음력}이 된다. (1)식은 균열크랙의 소성변형이 작은 경우이고 (2)식은 소성변형이 큰 경우이다.

따라서 균열을 갖는 시험관에 하중을 가하고 그것에 대응하는 \(K \) 또는 \(J \)값에서 균열크랙의 크기 \(\delta \)를 추정할 수도 있으며 본 실험에서는 크랙이자들의 그리드가 끼어있을 때의 \text{Strain}값의 변환으로서 COD의 값을 구해 보았다.

Fig. 2는 크랙이자의 \text{Strain}값을 사용하여 COD를 구하기 위한 방법을 도식화하여 나타낸 것이다.

![P/2](w)

plastic hinge

\(r(W-10) \)

Fig. 2 Plastic hinge of crack.
거리에 최적중심을 갖는 소성형지로 생각할 수 있다. 또한 크랙면은 직선을 유지한다고 가정하였다.

최적중심 r을 실험에 의하여 결정하여야 하는데 이는 크랙거리의 위치 a와 그리드가 평어짐에 따른 Strain값의 변화로부터 추정할 수가 있다.

CTOD는 Fig. 3에 보인 산형관계에 의해서 COD를 측정하여 결정할 수가 있으며 역시 크랙거리의 Strain값의 변동으로서 추정할 수가 있다. 즉

\[
\frac{\text{COD}}{\text{CTOD}} = \frac{10}{r(W-10)} + 1
\]

의 관계가 성립한다.

Fig. 3 Relationship between COD and CTOD.
(unit : mm)

Fig. 4 Schematic of crack gauge.

2.2. 크랙거리의 구조와 측정방법

Fig. 4는 크랙거리의 상세도를 보이고 있다. 이와같이 크랙이 진행함에 따라 각각의 그리드가 결단되어 크랙거리의 단차사이의 저항값이 변하고 Fig. 5에 보인 바와 같이 브리지출력이 Strain값의 변화로 나타날 수가 있다.

\[
\varepsilon = \frac{\varepsilon_{\text{max}} - \varepsilon_{0}}{N}
\]

여기서 N : 평어진 그리드 수로 되어 크랙의 진행에 따른 Strain변화값을 알 수가 있다.

또한 크랙의 전파속도는 Fig. 6에 보인 바와 같이 출력이 시간측에 대해 계단적으로 변하므로 시간의 진행에 따른 Strain값의 변화로서 크랙의 전파속도를 측정할 수가 있다. 이 경우 계단파형의 산을 연결한 직선의 기울기가 각 크랙의 위치에서의 전파속도가 된다.

Fig. 5 Relationship between strain and cutted grid.

Fig. 6 Relationship between strain and crack growth time.
2.3. AE측정원리와 AE신호처리 파라미터

고체재료중의 1점에서 어떤 에너지를 가진 시간함수인 1개의 AE파가 발생하면 재료 표면에 부착한 AE변환자에는 그 AE파가 대응하는 1개의 AE신호가 관측된다.

이와같은 AE신호는 AE신호에 대한 각종 사상(AE Event)에 의하여 관측되고 개개의 사상의 에너지와 지속시간, 그리고 개개의 사상이 발생하는 시간적 범도나 공간적 위치에 관한 정보를 나타내게 된다. 한편 균열진전시의 AE과 발생영역은 항복영역, 소성영역 및 프로세스(Process)영역으로 분류할 수 있다.

이와같은 AE특성을 결정하는 AE신호처리 파라미터는 개개의 AE신호과형을 해석하는 방법과 다채널(Multi-Channel)에 의한 계측으로부터 AE발생위치를 검출하는 방법의 2중류로 대별된다.

전자파 파라미터는 들발행 AE로서 Fig. 7에 보인 바와 같이 AE사상율, AE Ring-down count, 진폭분포, 에너지, 소음시간(Rise time), 지속시간(Duration) 그리고 실호치 전압(RMSa) 등이 있다. 그밖에 하중, COD, 온도 등의 외부 파라미터를 입력하고 AE정보에 따른 물리적 관계의 해석을 할 수 있다.

Table. 1 Chemical composition(wt. %) and mechanical properties for SM45C

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt. %</td>
<td>0.45</td>
<td>0.26</td>
<td>0.72</td>
<td>0.03</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Mechanical properties

<table>
<thead>
<tr>
<th>σs(Kg/mm²)</th>
<th>σy(Kg/mm²)</th>
<th>δ(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>50</td>
<td>17</td>
</tr>
</tbody>
</table>

Fig. 8에 보인 바와 같이 시험관은 ASTM E-399 규격에 의해 제작되었으며 기계가공으로 노치를 주고 이것은 3점 굽힘시험기에서 하중을 일정속도로 가하 였다.

Fig. 7 Parameter of acoustic emission signal analysis.

3. 실험방법

본 실험에 사용한 시험관은 SM45C로서 화학적 조성 및 기계적 성질은 Table. 1과 같다.

Fig. 8 3-point bending specimen.

Fig. 9 Load cell calibration curve.
시험편에 걸리는 하중을 측정하기 위하여 저항 350Ω의 스트레인 게이지를 사용하여 Load cell을 제작하였다. Fig. 9는 제작한 Load cell의 교정곡선이다. 본 연구에서의 계측시스템은 Fig. 10에 보이고 있다.

Fig. 10 Block diagram of measurement system.

AE변환자는 공진주파수 500KHz의 AE904S(NF사)이고 Pre−Amp. AE911(NF사)에서 20dB 증폭한 후 Main−Amp.와 Filter의 기능을 가지고 있는 Discriminator AE 921S(NF사)에서 40dB 증폭과 100KHz~1MHz의 Filtering을 하였다. 이후 Sampling time 50 ns, 분해능 8 bit인 Wave Memory WM 852(NF사)에 파형을 기록시킨 후 Recorder에 기록하였으며 동시에 오실로스코프로 파형을 관찰하였다. 또한 Dual counter AE 932(NF사)와 RMS Voltmeter M170(NF사)를 사용하여 Total count와 RMS Voltage를 검출하였다.

초음파 탐지자를로서는 5Z10×10A70인 사각탐지자를 사용하여 실험 중 잠시 정지하여 초음파 탐상기 SM 80(동경계기)로 Echo변화를 관찰하였으며 A scope converter를 통하여 파형을 기록하였다.

크레의 진단사항을 검출하기 위해 크레게이지 KV−5B(Kyowa)를 노치선단에 부착하였으며 측정시킨 후 Strain입력을 통해 크레진전에 따른 Strain값으로 COD를 측정하였다.

동시에 하중의 변화량을 자체 제작한 Load cell을 사용하여 Dynamic Amp. MD−6E−F(BLH사)로 증폭한 후 Recorder에 기록하였다.

4. 실험결과 및 고찰

4.1. AE감쇠영향측정

AE파는 주변환경에 따른 영향을 많이 받으므로 본 실험에 들어가기 전에 주변의 노이즈를 측정해 본 결과 약 7mV가 검출되었으며 이는 본 실험에 비하여 대

단히 작으므로 무시할 수 있었다. 또한 AE신호의 감도는 원파형의 발생 위치에 대한 거리에 따라 변하기 때문에 감쇠영향을 측정하기위해 시험편의 노치부위에 사프 절단이 빠르면서 발으니에 따라 여러 개의 영향을 검출해 보았다. 그 결과 Fig. 11에 보이어 바와 같이 거리가 멀어짐에 따라 AE전압이 감소한다는 것을 알 수 있으며 6cm 이후에는 거의 일정하였다.

Fig. 11 Damping effect of AE signal.

또한 Fig. 12에 보인 바와 같이 노치 바로 왼부분의 거리를 zero로 하였을때 (b)에 보인 바와 같이 Trigger전에도 파형이 검출되는 것은 거리가 멀어짐에 따른 반사와 궤도의 영향이라 생각된다.

Fig. 12 Detected waveform of sharp pencil breaking.
4.2. 크랙전진에 따른 COD검출

Fig. 13은 크랙게이지의 Strain값과 COD와의 관계를 보인 것이다. COD의 증가 즉 크랙게이지의 그래디언트가 움켜지며 따라 Strain값은 점차 포화되는 것을 보여 주고 있다. 이는 크랙이 전진함에 따른 재장의 영향이라 생각된다.

![Fig. 13 Relationship between strain and COD.](image)

4.3. AE와 하중, COD와의 관계

Fig. 14는 AE total count 및 AE RMS값에 대한 하중과 COD와의 관계를 보인 것이다.

![Fig. 14 Relationship between load, AE total count and AE RMS voltage.](image)

현이 함께 일어나기 때문이라 생각된다. AE total count는 초기에는 완만하게 증가하다가 점차 하중과 함께 급증하며 이후에는 완만하게 증가함을 보였으나 AE RMS값은 거의 전 구역에서 변동을 보이지 않았다. 이는 크레이 진행함에 따른 AE파가 들발파이고 에너지가 낮은 상태이기 때문이라 생각된다.

4.4. 초음파와 COD와의 관계

균열에 입사한 초음파의 반사파 강도를 조사하는 것은 실제로 실원을 사각관상할 때 탐상강도의 결정이나 크기측정의 정도를 향상시키는 데 있어서 중요하다. 특히 많은 사각 탐상의 경우 굴절 선단에서의 반사파가 Echo로서 관찰되어지므로 굴절선단에서의 반사파의 강도가 가장 문제가 된다고 생각된다.

Fig. 15는 초음파 Echo높이와 COD와의 관계를 보인 것으로 Echo높이의 증가 비율은 거의 비례관계를 보임을 알 수 있다.

![Fig. 15 Relationship between echo height and COD.](image)

Fig. 16은 실험이 시작되기 전에 끝난 후의 초음파 검출과정으로 실험 후 크랙의 진전에 따른 Echo높이가 증가했음을 알 수 있다.

그러나 초음파 사각탐상에서는 탐측자를 누르는 힘과 거리의 이동에 따른 Echo높이가 현저하게 변하므로 연속적으로 크랙의 진행사항을 검출하기에 곤란한 점
결론을 얻었다.
1. 크랙레이저의 브리그가 길이에 따른 Strain변화량과 그리드의 피치폭 a에 의해 COD를 간접적으로 추정할 수 있는 방법을 제안하였다.
2. AE는 크랙의 진행에 따라 AE total count의 변화량으로 연속적으로 감지할 수 있어 정성적으로 원인을 추구해 볼 수 있으나 초음파 사각형상은 탐측자의 변동과 누르는 함등에 따른 Echo높이의 변화로 인해 연속적으로 크랙의 진행을 검출하기에는 곤란하였다.
3. 크랙레이저로서는 브리그가 길이에 따라 Strain값의 변동으로 크랙의 진행사항을 확실히게 검출할 수는 있으나 비파괴적인 수법으로 적용하기가 곤란할 것이다.

References

5. 결 론

3점 급진시험법을 사용하여 AE와 초음파 그리고 크랙레이저의 검출 정도를 비교해 본 결과 다음과 같은 결과를 얻었다.

10. 최만용, 1985, “원자로압력용기용강의 과재입성시험에 있어서 AE계측에 의한 비파괴평가, 한양대학교 박사학위논문.”