The Effect of Dissolved Oxygen on the Estival Mass Mortality of sea squirt, *Halocynthia roretzi* (Drasche)

Gui-Hwan NA · Chae-Sung LEE and Woo-Jeung CHOI
Tong Young Fisheries Research Laboratory of National Fisheries Research and Development Agency, Tong Young 651-940, Korea

Mass mortality of *Halocynthia roretzi* has been occurred in culturing grounds of southern coast of Korea during the long period of summer drought and the unusual high water temperature in 1988. Especially *Halocynthia roretzi* was damaged severely in 2 years group. Therefore we verified these phenomena by observing the environmental factors of culturing grounds and by evaluating oxygen consumption rate in indoor experiment.

In culturing grounds, the mortality rate was high in Namhae Miso area where water temperature was the highest and the lowest in dissolved oxygen concentration as low as 3.76 ml/l in field observation.

In indoor experiment, the higher the water temperature, the more mortality was occurred and the salinity above 30‰ had no effect on its mortality. In oxygen consumption rate experiment, the smaller needs more oxygen than larger one, i.e., oxygen demand per unit weight was higher in 2 years group than that of 3 years. The theoretical and the actual minimum oxygen demands (MOD) for preventing asphyxiation was 3.7ml/kg/h at 20°C and 6.3ml/kg/h at 25°C. But actual MOD was 4.3ml/kg/h at 25°C in indoor experiment.

It seemed that mass mortality of *Halocynthia roretzi* in summer was caused by metabolism disorder due to insufficient oxygen level influenced by the high water temperature and the high density of *Halocynthia roretzi*, which results in the paucity of oxygen especially in 2 years groups.

緒 言

우렁이 (*Halocynthia roretzi* Drasche)는 글리코겐 죽물이 높고, 불교적 알코올의 일종인 설탕알(Chynthial)이란 성분이 있어 독특한 맛을 내므로(桐, 1979) 필요가 증가하며 최근*高所得 品種으로서漁場面積이나施設가 크게増加하고 있다(農林水産部, 1988).

그러나 1988년 우령성이 대량 멸종이 발생한 여름철 해양은 7, 8월에 높이, 고온으로 8월부터 멸종이 시작하여 9월에 가장 높았고 멸종체의 대부분이 2년 전의 것이 특별히 이의 원인을 알고서 8월에 고온으로 수중을 관찰하여 관찰해 보았지만 멸종이 적었으므로 높은 오름의 영향의 여름의 다른 교통이 작용한 것으로 추정되었다.

따라서 본 연구는 5개의 시기로 인한 서식지의 멸종, 유해성의 근본, 유해성의 멸종에 야기된 영향을 미치고 있는지 알기 위하여 양식의 서식지 및 멸종 상황을 조사하고 아울러 우령성이 양식에 따른 태세소용량 및 태세소용량 변화를 조사하였다.

材料 및 方法

1988년 여름에 남해안 전역에서 우령성이 대량 멸종한 서식지에 8월부터 10월까지 1개월의 각 환경 조건 및 멸종 상태를 3개의 서식지로 구분하여 (Fig. 1) 조사하였고, 실내 조건으로 우령성이 양식 부위의 수온 및 환경에 대한 생식적 실험과 태세소용량을 측정하였다.

(1) 멸종 및 환경 조사

- 태세소용량은 수온을 조절하여 20℃와 25℃로 조절하여 우령성이 6cm, 8cm 큰 크기로 조절된 서식지를 1그룹씩 넣고 종자 및 양식에 공급한 양으로부터 태세소용량 및 양식가능 가능한 양을 1cm 두께로 농축한 음식으로 했으며 1시간 동안 흡수자, 태세소용량을 측정하여 태세소용량을 측정하였다.

\[K_e = \frac{(C_w - C_e) \times V}{t \times w} \] \hspace{1cm} (1)

여기서,

- \(K_e \): 태세소용량 (ml/kg/h)
- \(C_w \): 테스트시작 후 테스트결과의 테스트결과
- \(C_e \): 테스트시작 후 테스트결과의 테스트결과
- \(t \): 시간
- \(w \): 무게

Fig. 1. Location of the sampling stations of Halocynthia roretzi.
결과

(1) 우령생이 殲死環境
우령생이 養殖이 활발한 咸山島, 彌勒島, 南海 3
個漁場의 우령생이 殲死率은(Table 1) 咸山漁場의
경우 7월까지 우령생이 殲死는 2.5%로 아주 낮으
나 水溼이 急上昇하는 8월부터 殲死가 增加하여 9
월에는 23.1%로 가장 높았다. 또한 彌勒島, 南海海
域에서도 이와 같은 傾向을 보이고 있으나 咸山漁
場에서도보다 殲死率이 增加 높은 39.6%, 74.3%로
各漁場 모두 9월에 가장 높았으며 海域別 殲死率
은 南海漁場이 가장 높았다.
우령생이 殲死가 進行되는 동안 養殖場環境은
溶存酸素의 경우 咸山漁場 4.73ml/L, 彌勒島漁場 4.5
ml/L 그리고 南海漁場이 3.79ml/L로 殲死率이 가장
높은 南海가 가장 높은 溶存酸素를 나타내었고 8
월에는 水溼이 27.5℃까지 上昇하였고 高水溼 現象
이 長期間 持續되는 異常海況을 보였다(Table 2).

또한 雨量은 6월에 184.5mm로 最高치였으며 그
後 8월부터 減少하여 우령생이의 大量 殲死
가 發生한 8～10月의 雨量은 14.3～63.5mm로 年
의 61.2～236.7mm보다 高い 値은 가름現象을 보
이고 있었다(Fig. 2).

(2) 高水溼 低鹽分에 對한 耐性試験
高水溼 低鹽分에 對한 우령생이 耐性을 調査하
기 위해 水槽에서 20일間 無給餌로 試験한 結
果는 Fig. 3, Fig. 4와 같다. 高水溼에 따른 우령생
이의 生存率을 보면 水溼 20℃에서 19일 만에 10%
의 殲死가 있었을 뿐 20일 동안 살아있었으며,
25℃일때는 4일 후부터 殲死기 시작하여 16일後
에 殲死率은 90%에 달했다. 水溼 26℃에서는 試験
開始日부터 殲死하였으며, 27.0℃에서는 試験開始日
부터 殲死기 시작하여 6일後에 50%, 14일後에
100% 殲死되었으며 27.5℃에서는 8일後에 全量
殲死하였다.

Table 1. Mortality rate and dissolved oxygen at the different culturing grounds of Halocynthia roretzi

<table>
<thead>
<tr>
<th>Month</th>
<th>Hansan</th>
<th>Mireukdo</th>
<th>Namhae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. H* (cm)</td>
<td>M. R** (%)</td>
<td>B. H (cm)</td>
</tr>
<tr>
<td>June</td>
<td>5.46</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>July</td>
<td>5.74</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>August</td>
<td>5.87</td>
<td>9.9</td>
<td>6.07</td>
</tr>
<tr>
<td>September</td>
<td>6.13</td>
<td>23.1</td>
<td>6.03</td>
</tr>
<tr>
<td>October</td>
<td>6.54</td>
<td>3.8</td>
<td>6.41</td>
</tr>
</tbody>
</table>

* B. H: Body height
** M. R: Mortality rate

Table 2. Days of occurrence above 25℃ at the different culturing grounds of Halocynthia roretzi

<table>
<thead>
<tr>
<th>Water temp. (℃)</th>
<th>Hansan</th>
<th>Mireukdo</th>
<th>Namhae</th>
<th>Mean year (Chung mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1～26.0</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>26.1～27.0</td>
<td>6</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>27.1～27.5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>0</td>
<td>27</td>
<td>0</td>
</tr>
</tbody>
</table>
는 6일동안에 소량 죽어하였다.

(3) 우령생의 죽음은
우령생이 크기 및 수면에 따른 우령생의 죽음의 유무를 나타내는 시간을 살펴보면 Fig. 5와 같다. 우령생의 죽음은 2년생(중량 47~50g)의 경우 수면 20℃와 25℃에서 1시간 후에 각각 21.0mL/kg, 23.5mL/kg/h, 3시간 후에 각각 11.2mL/kg, 14.5mL/kg/h였고, 각각 15시간, 9시간 이후부터 죽음을 일으켰으며, 이때의 우령생의 죽음은 3.7mL/kg/h, 4.5mL/kg/h로 나타났다. 또한 3년생(중량 104~108g)의 경우 수면 20℃와 25℃에서 1시간 후의 우령생의 죽음은 각각 13.2mL/kg, 16.1mL/kg/h, 3시간 후에 각각 7.7mL/kg, 10.2mL/kg/h였고, 각각 14시간, 7시간 이후부터 죽음을 일으켰으며, 이때의 우령생의 죽음은 2.2mL/kg/h, 4.2mL/kg/h로서 수면 20℃에 따라 죽음을 일으키는 시간이 현저히 차이가 있었고 우령생의 죽음도 많았으며 또한 유관한 대상에 대한 유관한 죽음의 나이가 증가하였다.

또한 우령생이 수면은 도와 난관의 성장에 따라 우령생의 죽음은 알려지지 않으며 실험의 결과를 보면 Fig. 6과 같다. 난관의 성장의 우령생의 죽음은 난관의 성장이 빨라 수면이 높을수록 우령생의 죽음이 많아 난관의 성장에 대한 우령생의 죽음은 난관의 성장이 증가하여 난관의 성장에 대한 난관의 성장이 높은 우령생의 죽음이 높았다. 수면 20℃에서의 우령생의 죽음은 3.7mL/kg/h, 25℃에서 6.3mL/kg/h로 나타나 실험을 보던 실험실 4.5mL/kg/h에 비하여 현저히 높은 수준을 보였으나 난관의 성장에 대한 난관의 성장이 높은 우령생의 죽음은 난관의 성장이 높은 우령생의 죽음이 높았다.

考 察
우령생이 난관에서 죽어는 9월이 가장 높고, 해로도 높은 난관의 성장에 74.3%로 가장 높은 죽음률을 보였다(Table 1). 우령생의 자생 환경은 수면, 난관의 성장에 의하여 (藤原 1966; 機池, 1976; 金, 1980) 수면에 적응하지 않는 난관의 성장에 대한 난관의 성장이 높은 우령생의 죽음이 높았다.

Fig. 2. Monthly changes of precipitations at Chung Mu meteorological station.

Fig. 3. Survival rate of Halocynthia roretzi at the different water temperature.

Fig. 4. Survival rate of Halocynthia roretzi at the different salinity.
Fig. 5. Changes of oxygen consumption of Halocynthia roretzi at the different water temperature.

Fig. 6. Theological value of minimum oxygen demands to the oxygen consumption of individual weight and specific weight at different water temperature by Halocynthia roretzi.
여름철 우령생이 대량 극생에 대한 용해산소의 영향

1914년, 힐베르스(1979)에 의하면 분해 산소의 소비량이 매우 높기 때문에 그 이후에는 열 효과, 이온 목표 등을 가리고
산소 소비로는 증가하고图形상도 높게 나타난다고 말했다.

Fig. 5에와 같이 우령생의 산소 소비량은 수온 20~25℃에서 13.2~23.5ml/kg/h이고, 수온과 크기
에 따라 산소의 소비량은 동물의 크기에 따라 3.3에서 5.3로 변형하는
다. 또한 25℃일 때 8시간에서 30%의 산소가 소비된다고 하였다.

우령생의 산소 소비량은 크기에 따라 30~50%의 산소가 소비되는 것으로
하고 있다. 25℃일 때 8시간에서 30%의 산소가 소비된다고 하였다.

우령생의 산소 소비량은 크기에 따라 30~50%의 산소가 소비되는 것으로
하고 있다. 25℃일 때 8시간에서 30%의 산소가 소비된다고 하였다.

위의 결과로서 다른 종류의 용해산소 소비에 관한

Table 3. Comparison of oxygen consumption of Halocynthia roretzi to the other species

<table>
<thead>
<tr>
<th>Species</th>
<th>Water temp.(℃)</th>
<th>Body weight(g)</th>
<th>Oxygen consumption (ml/kg/h)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroconger myriaster</td>
<td>19.5</td>
<td>294</td>
<td>84.24</td>
<td>Wi, 1976</td>
</tr>
<tr>
<td>Portunus trituberculatus</td>
<td>19.0</td>
<td>270</td>
<td>50.08</td>
<td>Wi, 1976</td>
</tr>
<tr>
<td>Batillus cornutus</td>
<td>19.0</td>
<td>190</td>
<td>29.78</td>
<td>Wi, 1976</td>
</tr>
<tr>
<td>Anadara broughtonii</td>
<td>19.2</td>
<td>202</td>
<td>11.13</td>
<td>Wi, 1976</td>
</tr>
<tr>
<td>Corbicula fluminea</td>
<td>25.0</td>
<td>0.7~10.3</td>
<td>3.0</td>
<td>Sung, 1972</td>
</tr>
<tr>
<td>Halocynthia roretzi</td>
<td>20.0</td>
<td>47</td>
<td>21.0</td>
<td>Present study</td>
</tr>
<tr>
<td>Halocynthia roretzi</td>
<td>25.0</td>
<td>50</td>
<td>23.5</td>
<td>Present study</td>
</tr>
<tr>
<td>Halocynthia roretzi</td>
<td>20.0</td>
<td>104</td>
<td>13.2</td>
<td>Present study</td>
</tr>
<tr>
<td>Halocynthia roretzi</td>
<td>25.0</td>
<td>108</td>
<td>16.1</td>
<td>Present study</td>
</tr>
</tbody>
</table>

1988년 여름철의 강간기 굴물 및 고다수온으로 바다

요금에서 우령생이 대량 극생이 일어났으나
毙死에의 대부분이 2년 사진에 있는 제기이 특이하여 그 원
인을 밝히고자 entrenched 酸素濃度와 毙死現象을
사례하고 室内에서 水温 및 鹽分에 대한 耐性試驗
과 同等 個體別 酸素消費量에 重心을 두어 試驗한
結果는 다음과 같다.
우량생이 毙死는 水温期이 8월부터 增加하기
사라져 9월에 最大에 달했고 毙死率는 溶存酸素
濃度가 3.72ml/L로 最低値을 보인 南海 漁助漁場에
서 74.3%로 가장 높았으며 壽勒島, 閨山漁場 순이
었다.
20일간 高水温 耐性試驗에서 水温 25℃일때 30%
毙死되었으나 27℃ 이상에서는 全数毙死하였고 鹽
分은 30% 이상되면 毙死와 無関하였다.
우량생이의 酸素要求量은 溫度가 높을수록, 單位
重量에 대한 個體가 작을수록 즉 3年産에 比해 2
年産이 높았으며 窒息을 防止하기 위한 最低酸素
要求量은 20℃에서 3.71ml/kg/h, 25℃에서 6.3ml/kg/h
로 水温에 따라 큰 差異를 보였다.
우량생이의 大量毙死는 高水温에 의한 代謝障礙
가 있던 중 우량생이 群集의 酸素要求量에 대한
水中的 溶存酸素가 不充分하여 大量毙死を 加重시
킨 것 같으며 1年産이나 3年産에 比해 2年産의
d大量毙死는 群集의 酸素要求量 差異에 起因한 것으
로 생각된다.

文 献

Cohnheim, O. 1912. Z. F. physioal. chem. 76, 298～
313.

Gradner, J. A. and C. Leatham. 1914. On the respir-
atory exchange in fresh water fish. J. Bio-
chem. 8, 374.

Kleiber, Max. 1961. The fire of life. John wiley and
sons, inc. New York.

Zeuthan, E. 1947. Body size and metabolic rate in
the animal kingdom with special regard to the
marine mico-fauna. Compt. rend. lab. Carls-

Zeuthan, E. 1953. Oxygen uptake and body size in

菊池要三郎, 1976. マボヤの高溫耐性. 養殖, 13(3),
86p.

藤田琢磨・藤田信, 1986. ホヤの飼育試験. 養殖, 3
(9), 65～67.

尾崎篤雄, 1979. 魚類生理學講座 第2巻, 呼吸の生
理. 総書房, 東京, 354p.

山口正男, 1978. タイ養殖の基礎と現実. 恒星社厚
生閣, 東京, 414p.

酒井誠一, 1982. 海のパイナツルニホヤの飼殖.
養殖, 19(2), 44～47.

金榮吉, 1980. 古群山列島の 人工養殖 Halocynthia
rorerzi(V. Drasche) 移殖に於ける 生態学的 研
究. 韓水誌, 13(2), 57～64.

成員好子, 1972. 溫度及 鹽分濃度の 削減に 適当
なる 魚苗選別 Corbicula fluminea(Muller)の 呼吸能
力に 合する. 釜山水大臨海研報, 5, 37～43.

柳慕奎, 1979. 深海養殖. 新義出版, 519～529.

柳慕奎・林賢植・林東澤, 1988. 人工種苗の 魚苗
飼育 (Halocynthia rorerzi)の 成長. 韓國養
殖學會誌, 1(1), 75～84.

維塚賢・塚野智, 1976. 鱸児水槽に 魚苗 級別研
究 (1). 水産研究報告, 15, 91～108.

張東錫・李世柱・鄭成榮・徐海箏, 1982. 人工飼育
歿死原因 調査. 水殖研究報告, 29, 7～40

1990년 12월 19일 집수
1991년 1월 19일 수리