TOPOLOGICALLY FREE ACTIONS AND PURELY INFINITE C^*-CROSSED PRODUCTS

JA A JEONG

1. Introduction

For a given C^*-dynamical system (A, G, α) with a G-simple C^*-algebra A (that is A has no proper α-invariant ideal) many authors have studied the simplicity of a C^*-crossed product $A \rtimes_{\alpha} G$. In [1] topological freeness of an action is shown to guarantee the simplicity of the reduced C^*-crossed product $A \rtimes_{\alpha r} G$ when A is G-simple.

In this paper we investigate the pure infiniteness of a simple C^*-crossed product $A \rtimes_{\alpha} G$ of a purely infinite simple C^*-algebra A and a topologically free action α of a finite group G, and find a sufficient condition in terms of the action on the spectrum of the multiplier algebra $M(A)$ of A. Showing this we also prove that some extension of a topologically free action is still topologically free.

2. Topologically free action

Let (A, G, α) be a C^*-dynamical system. Then there is an action of G on the spectrum \hat{A} of A; for each $\pi \in \hat{A}$, $t\pi(a) = \pi(\alpha_t(a))$, $t \in G, a \in A$. An action α is said to be topologically free if for any $t_1, \ldots, t_n \in G \setminus \{e\}$ the set $\bigcap_{i=1}^n \{ \pi \in \hat{A} \mid t_i \pi \neq \pi \}$ is dense in \hat{A}.

Remark 1. If A is simple, then \hat{A} is the only nonempty open set of \hat{A}. This is because each open set in \hat{A} corresponds to an ideal of A. Hence, for A, α is topologically free if and only if $\bigcap_{i=1}^n \{ \pi \in \hat{A} \mid t_i \pi \neq \pi \}$ is nonempty for every $t_1, \ldots, t_n \in G \setminus \{e\}$.

1991 Mathematics Subject Classification. 46L05, 46L55.
Supported by Global Analysis Research Center.
In [1], it was shown that if α is topologically free, then each automorphism α_t is properly outer for $t \setminus \{e\}$; that is, for every nonzero α_t-invariant ideal I of A and inner automorphism β of I, $\| \alpha_t|_I - \beta \| = 2$. Hence, if α is a topologically free action on a simple C^*-algebra A by a group G, then each automorphism α_t is outer for $t \setminus \{e\}$. Conversely, as it was mentioned in [1], if A is a separable simple C^*-algebra, and each $\alpha_t(t \neq e)$ is outer, then α is topologically free. This follows because topological freeness is weaker than the strong Connes spectrum condition used in [8], and the spectrum condition is equivalent to the outerness of α for simple C^*-algebras.

Let (A, G, α) be a C^*-dynamical system with a discrete group G. Then the action α uniquely extends to an action on the multiplier algebra $M(A)$ of A, and we write this extension by α again.

Recall that a C^*-algebra A is said to be purely infinite if every hereditary C^*-subalgebra of A has an infinite projection, a projection equivalent to its subprojection. Obviously, every hereditary C^*-subalgebra of a purely infinite C^*-algebra is purely infinite. It is not known whether a simple C^*-algebra containing an infinite projection is purely infinite or not. For properties and examples of purely infinite C^*-algebras, refer to [3], [12], and [13].

If A is purely infinite, then so is $M(A)$, and the following is proved by Rørdam:

Proposition 2. [12] Let A be a unital simple C^*-algebra, and let \mathcal{K} denote the C^*-algebra of compact operators on an infinite dimensional separable Hilbert space. Then $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ is simple if and only if A is the matrix algebra $M_n(\mathbb{C})$ or purely infinite.

Proposition 3. Let (A, G, α) be a C^*-dynamical system where A is a σ-unital nonunital purely infinite simple C^*-algebra. If α is topologically free, then so is the extension α on $M(A)$.

Proof. For $t_1, \ldots , t_n \in G \setminus \{e\}$, the set $X = \bigcap_{i=1}^n \{ \pi \in \hat{A} | t_i \pi \neq \pi \}$ is dense in \hat{A}. Each representation $\pi \in X$ on a Hilbert space H extends uniquely to $M(A)$ [4, Proposition 2.10.4] on H so that the extension, also denoted by π, is still irreducible.

Let T be a bounded operator on H intertwining π and $t_i \pi$; that is,
Topologically free actions and purely infinite C*-crossed products

\[T\pi(x) = t_i\pi(x)T \text{ for } x \in M(A). \] Then \(T \) automatically intertwines \(\pi \) and \(t_i\pi \) on \(A \). Hence, \(T \equiv 0 \) because \(\pi \) and \(t_i\pi \) are disjoint [9, Corollary 3.13.3]. Therefore, \(\pi \) and \(t_i\pi \) are disjoint as representations of \(M(A) \) so that \(Y = \bigcap_{i=1}^{n} \{ \pi \in M(A)^\sim | t_i\pi \neq \pi \} \) has nonempty intersection with \(\hat{A} \). Since \(A \) is nonunital, \(A \) is stable [14, Theorem 1.2] and we hence have \(A \cong A \otimes K \cong A_0 \otimes K \) for each unital hereditary (simple) C*-subalgebra \(A_0 \) of \(A \) since a \(\sigma \)-unital simple C*-algebra is stably isomorphic to its hereditary C*-subalgebra [2, Corollary 2.6]. Therefore, \(A \) is the unique ideal in \(M(A) \) by Proposition 2; that is, \(\hat{A} \) is the unique proper open subset in \(M(A)^\sim \), and we conclude that \(Y \) is dense in \(M(A)^\wedge \), and we conclude that \(Y \) is dense in \(M(A)^\wedge \).

Given a C*-dynamical system \((A, G, \alpha)\), we have an induced C*-dynamical system \((A \otimes K, \tilde{\alpha} = \alpha \otimes \text{id}, G)\). For a unital simple C*-algebra \(A \), we will show that \(\tilde{\alpha} \) is topologically free if \(\alpha \) is. If \(\pi : A \to B(H) \) is an irreducible representation of \(A \), then \(\tilde{\pi} = \pi \otimes \text{id} : A \otimes K \to B(H \otimes H') \) is still irreducible [7, Proposition 11.3.2], where \(H' \) is a separable infinite dimensional Hilbert space. Note that given a C*-dynamical system \((A, G, \alpha)\), we have the action of \(G \) on the spectrum \((A \otimes K)^\wedge \) given by \(\hat{t}\tilde{\pi}(x) = \tilde{\pi}(\tilde{\alpha}_t(x)) \) for \(x \in A \otimes K, t \in G \), and \(\tilde{\pi} \in (A \otimes K)^\wedge \).

Lemma 4. If \(\pi : A \to B(H) \) is an irreducible representation of a unital C*-algebra \(A \) such that \(t\pi \neq \pi \), then \(\hat{t}\tilde{\pi} \neq \tilde{\pi}, t \in G \setminus \{e\} \).

Proof. We show that \(\hat{t}\tilde{\pi} \) is disjoint with \(\tilde{\pi} \). Let \(T \) be an intertwining operator of \(\hat{t}\tilde{\pi} \) and \(\tilde{\pi} \) on \(H \otimes H' \), that is, \(\tilde{\pi}(x)T = T\hat{t}\tilde{\pi}(x) \) for \(x \in A \otimes K \).

For a nonzero vector \(\xi_0 \in H' \), let \(p_0 \in K \) be the projection onto the one dimensional subspace \(\langle \xi_0 \rangle \) of \(H' \) so that \(1 \otimes p_0 \in A \otimes K \).

For each vector \(\eta \otimes \xi_0 \in H \otimes \xi_0 \), we have

\[
(1 \otimes p_0)T(\eta \otimes \xi_0) = \tilde{\pi}(1 \otimes p_0)T(\eta \otimes \xi_0)
\]
\[
= T\hat{t}\tilde{\pi}(1 \otimes p_0)(\eta \otimes \xi_0)
\]
\[
= T\tilde{\pi}(\alpha_t(1) \otimes p_0)(\eta \otimes \xi_0)
\]
\[
= T(\eta \otimes \xi_0).
\]
Let \(\{\xi_i\}_{i=0}^{\infty} \) be an orthogonal basis of \(H' \). Then we can write

\[
T(\eta \otimes \xi_0) = \eta_0 \otimes \xi_0 + \sum_{i=1}^{\infty} \eta_i \otimes \xi_i
\]

for some \(\eta_i \in H \) and \((1 \otimes p_0)T(\eta \otimes \xi_0) = \eta_0 \otimes \xi_0\). Hence, \(T(\eta \otimes \xi_0) = \eta_0 \otimes \xi_0 \) for some \(\eta_0 \in H \). Moreover, it is not difficult to show that the map \(T_0 : H \to H \) defined by \(T_0(\eta) = \eta_0 \) is bounded linear. For \(a \otimes p_0 \in A \otimes \mathcal{K}, a \in A \), we have

\[
\pi(a)\eta_0 \otimes \xi_0 = (\pi(a) \otimes p_0)(\eta_0 \otimes \xi_0) = (\pi(a) \otimes p_0)(T(\eta \otimes \xi_0))
\]

\[
= \tilde{\pi}(a \otimes p_0)T(\eta \otimes \xi_0) = T\tilde{\pi}(a \otimes p_0)(\eta \otimes \xi_0)
\]

\[
= T(\pi(\alpha_t(a)) \otimes p_0)(\eta \otimes \xi_0)
\]

\[
= T(\pi(\alpha_t(a))\eta \otimes \xi_0) = (\pi(\alpha_t(a))\eta)_0 \otimes \xi_0
\]

Hence, \(\pi(a)\eta_0 = (\pi(\alpha_t(a))\eta)_0 \); that is, \(\pi(a)T_0 = T_0(t\pi(a)) \) for every \(a \in A \) because the map \(H \to H \otimes \xi_0 \) given by \(\eta \mapsto \eta \otimes \xi_0 \) is injective. Since \(\pi \) and \(t\pi \) are disjoint, we conclude that \(T_0 \equiv 0 \). Therefore, \(T \equiv 0 \) because \(\xi_0 \) is an arbitrary non zero vector of \(H' \).

Theorem 5. Let \((A \otimes \mathcal{K}, G, \tilde{\alpha} = \alpha \otimes \text{id})\) be a \(C^* \)-dynamical system where \(A \) is a simple \(C^* \)-algebra. Then \(\tilde{\alpha} \) is topologically free if so is \(\alpha \).

Proof. Since \(A \otimes \mathcal{K} \) is simple, it suffices to show that for every \(t_1, \ldots, t_n \in G \setminus \{e\} \), the set \(\bigcap_{i=1}^{n} \{ \tilde{\pi} \in (A \otimes \mathcal{K})^k | t_i \tilde{\pi} \neq \tilde{\pi} \} \) is nonempty. But this is almost obvious by Lemma 4.

3. Purely infinite simple \(C^* \)-crossed products

Let \((A, G, \alpha)\) be a \(C^* \)-dynamical system with a purely infinite simple \(C^* \)-algebra \(A \) and a finite group \(G \).

In this section, we examine the pure infiniteness of the infinite \(C^* \)-algebra \(A \rtimes_{\alpha} G \).
Topologically free actions and purely infinite C^*-crossed products

Theorem 6. Let (A, G, α) be a C^*-dynamical system with a purely infinite simple C^*-algebra A and a finite group G. If α is a topologically free action such that

$$\bigcap_{t \in G \setminus \{e\}} \{ \bar{\pi} \in (M(A \otimes \mathcal{K}))^\wedge | \tilde{t}\bar{\pi} \neq \bar{\pi} \} \cap \hat{A}^G \neq \emptyset,$$

then the infinite simple C^*-crossed product $A \rtimes_\alpha G$ is purely infinite.

Proof. It is known that the fixed point algebra A^α can be regarded as a hereditary C^*-subalgebra of the infinite simple C^*-algebra $A \rtimes_\alpha G$ whenever G is compact [10]; hence, A^α contains a projection p [5]. The unital hereditary C^*-subalgebra A_p of A generated by p is invariant under α. Moreover, from [11, Lemma 3.4], we see that if $A_p \rtimes_\alpha G$ is purely infinite, then so is $A \rtimes_\alpha G$. Actually, for each hereditary C^*-subalgebra B of $A \rtimes_\alpha G$, we can find a unitary element $u \in M(A \rtimes_\alpha G)$ such that $uBu^* \cap (A_p \rtimes_\alpha G) \neq 0$; hence, B has an infinite projection if $A_p \rtimes_\alpha G$ is purely infinite. Hence, we may assume that A is unital. Note that $A \rtimes_\alpha G$ is purely infinite if and only if $(A \rtimes_\alpha G) \otimes \mathcal{K}$ is purely infinite [14, Proposition 1.4]. Since $(A \rtimes_\alpha G) \otimes \mathcal{K} \cong (A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G$ [6, Theorem 2.6] it suffices to show that $M((A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G)/(M(A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G)$ is simple by Proposition 2. Note that $M((A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G) = M(A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G$ (G is finite) and

$$M((A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G)/(M(A \otimes \mathcal{K}) \rtimes_\bar{\alpha} G) \cong (M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \rtimes_\bar{\alpha} G.$$

The fact that $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ is simple implies that the C^*-algebra $(M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})) \rtimes_\bar{\alpha} G$ is simple if $\bar{\alpha}$ is topologically free. Our assumption says that there is an irreducible representation $\bar{\pi}$ of $M(A \otimes \mathcal{K})$ with $\ker \bar{\pi} = A \otimes \mathcal{K}$ and $\tilde{t}\bar{\pi} \neq \bar{\pi}$ for $t \in G \setminus \{e\}$, which means that

$$\bigcap_{t \in G \setminus \{e\}} \{ \bar{\pi} \in (M(A \otimes \mathcal{K})/(A \otimes \mathcal{K}))^\wedge | \tilde{t}\bar{\pi} \neq \bar{\pi} \} \neq \emptyset,$$

and hence $\bar{\alpha}$ is topologically free by Remark 1.
Remark 7. An action α satisfying the condition in the above theorem induces an outer action of G on a purely infinite simple C^*-algebra $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$. In case α induces an inner action of G on $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K})$ so that $M(A \otimes \mathcal{K})/(A \otimes \mathcal{K}) \times _{\hat{\alpha}} M(A \otimes \mathcal{K})/(A \otimes \mathcal{K}) \otimes C^*(G)$ for the group C^*-algebra C^* of G then the crossed product $A \times _{\alpha} G$ is purely infinite whenever $C^*(G)$ is simple since $C^*(G)$ is just a matrix algebra.

References