Consolidation Behavior of Vertical Drain in consideration of Smear Effect and Well Resistance

Tae Woo Kim* · Yea Mook Kang* · Dal Won Lee*

SUMMARY

This study was compared the degree of consolidation by Hyperbolic, Curve fitting, Asaoka’s, Monden’s methods using measured value with theoretical curve in consideration of smear effect and well resistance. The results of the study were summarized as follows:

1. The degree of consolidation by Hyperbolic method was underestimated than the degree of consolidation by Curve fitting, Asaoka’s, and Monden’s methods.

2. Typical range of horizontal coefficient of consolidation was $C_h=(2.3)C_v$ in the case considering smear effect and well resistance, and $C_h=(0.5\sim2.5)C_v$ in the case disregarding smear effect and well resistance.

3. The degree of consolidation obtained by ground settlement monitoring was nearly same value when the coefficient of permeability of smear zone by back analysis was shown the half that of in-situ and the diameter of smear zone was shown double that of mendrel.

4. Increasing of diameter reduction ratio of drain, the time of consolidation was delayed. The affection of well resistance the case of small coefficient of permeability was much more than that in the case of large coefficient of permeability. It was recommended that design of diameter reduction of drain consider smear effect and well resistance.

* 충남대학교 농과대학 농공학과 (Dept. of Agricultural Engineering, College of Agriculture, Chungnam National University, Taejon, Korea/ZIP: 305-764)
의 효율성 제고를 위하여 열약한 지반조건을 가진 해안유역사업의 필요성이 강하게 대두되고 있으며, 실제로 국내에서도 연약한 해안 점토지반 및 해수로 조성된 연약지반의에 다양한 구조물 건설하는 사례가 증가하고 있다.

이와 같은 해안 점토지반 및 해수로 조성된 연약지반을 대상으로 공사를 시행할 때는 구조물에 생기는 부등첨하, 기초지반의 지력 부족으로 인한 철근의 파괴, 철근 또는 구조물의 하중에 의한 축방지반의 윗기, 지진에 의한 기초지반의 역상회 및 지력의 감소 등과 같은 문제점에 대한 충분한 검토가 있어야 한다. 이런 문제점을 해결하기 위한 대책은 지반의 침하제어 구조에 대한 전전통합화 및 침하타원화 임상수리가 침하 촉발과 지반의 강도를 증대시킴에 따라 안정성도 도모하는 안정대책으로 나눌 수 있다. 연약지반 개량공법중에서 시공 기간 단축을 위해 신흥장공법과 발전하여 지반에 연속 배수계를 삽입하여 지반의 압밀을 축진시키고 강도를 증대시키는 연직 배수 공법이 많이 사용되어지고 있다.

특히, 연직 배수계의 설계는 적응되는 변수들을 따라서 압밀도의 차이를 나타내고 있으며, 설계시 현장에서 발생되는 교량효과와 배수지형의 정확한 영향을 줄기지고 있으며 연약지반처리지 공사기간과 공사비에 많은 영향을 미치고 있다.

따라서 본 연구에서는 실측 침하장려와 실험사례에 구한 압밀계수를 비교하여 현장 압밀계수의 변화를 산정하였다. 두, 교량효과와 배수지형에 관련된 변수들을 변화시킨 여러압밀이론식과 축정선, Curve Fitting, Asaoka, Monden 방 법에 의한 실험 압밀도측정을 비교 분석하여 현장 실측 침하장려로부터 교량효과와 배수지형의 영향범위를 산정하여 합리적인 연직 배수계의 설계효과를 제공하고자 한다.

제료 및 방법

1. 대상 지반의 개요

본 연구 대상 지반은 000미터계발 사업지역이며, 현장 토질조사결과 N치 2-3의 대단히 연약한 지층이 20～30m 두께로 균일하게 분포하고, 30m이하에서는 N치가 11～13 정도의 모래질 입자층이나 모래층으로 분포하였다.

2. 실험실시 결과

대상 지반의 물리적, 역학적 특성을 파악하고, 지반의 전단강도 및 압밀특성을 파악하기 위하여 불교란 시험을 제시하여 실험적 결과는 다음과 같다.

<table>
<thead>
<tr>
<th>Method</th>
<th>Depth (m)</th>
<th>Wc(%)</th>
<th>e0</th>
<th>Cc</th>
<th>OCR</th>
<th>Cv (cm/s)</th>
<th>Kw (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Menard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>45</td>
<td>1.137</td>
<td>0.42</td>
<td>3.00</td>
<td>1.50×10^{-3}</td>
<td>9.595×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>70</td>
<td>1.796</td>
<td>0.80</td>
<td>0.49</td>
<td>3.47×10^{-4}</td>
<td>3.46×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>55</td>
<td>1.520</td>
<td>0.62</td>
<td>1.05</td>
<td>3.41×10^{-4}</td>
<td>2.583×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>45</td>
<td>1.265</td>
<td>0.46</td>
<td>1.70</td>
<td>1.43×10^{-3}</td>
<td>8.70×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>B: Pack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>45</td>
<td>1.137</td>
<td>0.42</td>
<td>3.07</td>
<td>2.17×10^{-3}</td>
<td>9.595×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>66</td>
<td>1.739</td>
<td>0.53</td>
<td>0.37</td>
<td>3.53×10^{-4}</td>
<td>3.287×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>70</td>
<td>1.893</td>
<td>0.79</td>
<td>0.89</td>
<td>2.22×10^{-4}</td>
<td>2.025×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>25.7</td>
<td>40</td>
<td>1.400</td>
<td>0.32</td>
<td>1.47</td>
<td>1.19×10^{-3}</td>
<td>4.01×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>C: Plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>45</td>
<td>1.196</td>
<td>0.43</td>
<td>1.67</td>
<td>1.05×10^{-3}</td>
<td>9.235×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>70</td>
<td>1.882</td>
<td>0.83</td>
<td>0.55</td>
<td>3.12×10^{-4}</td>
<td>3.11×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>60</td>
<td>1.549</td>
<td>0.63</td>
<td>1.15</td>
<td>3.43×10^{-4}</td>
<td>1.891×10^{-8}</td>
<td></td>
</tr>
<tr>
<td>25.7</td>
<td>38</td>
<td>1.353</td>
<td>0.46</td>
<td>1.72</td>
<td>1.58×10^{-3}</td>
<td>9.556×10^{-8}</td>
<td></td>
</tr>
</tbody>
</table>
지연함수비와 액성한해의 범위는 각각 40~80%가, 30~55%의 범위로 분포되어 있으며, 지표면에서는 낮고 심도가 깊어지면서 증가하여 10.0m 부분에서 최저치를 나타내고 그 후는 심도 가 깊어짐에 따라 점차로 감소하는 경향을 보여 주고 있다.

삼축압축시험으로부터 구한 비배수 전단강도는 0.1~0.3kGF/cm²의 범위이고, 일축압축강도는 0.1~0.6kGF/cm²의 범위로 나타났다.

압밀시험에 의한 압밀계수는 2.0×10⁻⁴~2.0×10⁻⁵cm²/sec의 범위로 분포되어 있으며, 지표면에서는 크게 나타나고 점차적으로 일정한 값을 나타내다가 20.0m부터 증가하고 있다.

본 연구에 이용한 홀의 성질은 표 1과 같다.

3. 성토시공 및 계측

대상 지반의 성토는 0.5m의 샘드 메트로 포설한 후 안정관리분석과 병행하여 실시하였고, 불안정하다고 판단되었을 경우는 방지기근을 두어 성토속도와 성토고를 조절하면서 5.0m까지 성토하였다.

해석에 이용한 침하량은 측별침하계에 의하여 측정된 자료를 사용하였다.

결과 및 고찰

1. 최종침하량의 추정과 비교

현장에서 계측된 침하자료를 이용하여 쌓어막, Curve Fitting, Asaoka, Monden 등의 방법으로 최종침하량을 추정한 결과는 표 2와 같다.

최종침하량은 밑반 지반의 압밀도는 약 90~95%정도로 추정된다. 또, 각 분석방법에 따른 최종침하량을 비교하면 쌓어막 > Monden > Asaoka > Curve Fitting방법으로 최종침하량이 상대적으로 낮은 것으로 나타났다. 쌓어막 방법은 다른 방법들로 구한 최종침하량보다 43~84cm 정도가 더 발생한다는 것으로 추정되었으며, 그 결과 현재까지의 침하량 (약 400일)을 기준으로 압밀도는 약 7~20%정도의 차이가 나타났다. 이는 쌓어막 방법이 다른 방법들로는 달리 2차압축을 고려할 수 있으므로 약간 큰 값을 나타낸 것으로 판단된다.

Monden방법은 Asaoka, Curve Fitting방법로 비교하여 최종침하량이 약간 크게 상대적으로 낮은 것으로 나타났다. 이는 침하자료의 편평분석 결과에 따라 약간의 차이가 있는데 전체 침하자료를 사용한 결과에 따른 것이다. 또, Asaoka, Curve Fitting방법은 거의 유사한 결과를 나타냈다.

<table>
<thead>
<tr>
<th>Method</th>
<th>Measured settlement</th>
<th>Hyperbolic</th>
<th>Curve Fitting</th>
<th>Asaoka</th>
<th>Monden</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1.0m</td>
<td>324.60</td>
<td>413.90</td>
<td>329.60</td>
<td>336.90</td>
<td>370.00</td>
</tr>
<tr>
<td>A 1.2m</td>
<td>293.10</td>
<td>392.79</td>
<td>282.90</td>
<td>295.60</td>
<td>310.00</td>
</tr>
<tr>
<td>A 1.4m</td>
<td>273.30</td>
<td>348.32</td>
<td>260.70</td>
<td>263.70</td>
<td>290.00</td>
</tr>
<tr>
<td>A 1.6m</td>
<td>246.70</td>
<td>388.30</td>
<td>302.40</td>
<td>311.50</td>
<td>370.00</td>
</tr>
<tr>
<td>B 1.0m</td>
<td>277.60</td>
<td>358.93</td>
<td>285.40</td>
<td>291.99</td>
<td>300.00</td>
</tr>
<tr>
<td>B 1.2m</td>
<td>302.10</td>
<td>435.13</td>
<td>323.20</td>
<td>317.30</td>
<td>340.00</td>
</tr>
<tr>
<td>B 1.4m</td>
<td>299.20</td>
<td>445.00</td>
<td>305.10</td>
<td>320.60</td>
<td>330.00</td>
</tr>
<tr>
<td>B 1.6m</td>
<td>277.90</td>
<td>411.47</td>
<td>315.50</td>
<td>322.10</td>
<td>330.00</td>
</tr>
<tr>
<td>C 1.0m</td>
<td>283.10</td>
<td>374.85</td>
<td>290.70</td>
<td>297.20</td>
<td>310.00</td>
</tr>
<tr>
<td>C 1.5m</td>
<td>263.20</td>
<td>378.98</td>
<td>283.50</td>
<td>292.60</td>
<td>310.00</td>
</tr>
</tbody>
</table>
분석방법에 따라서 최종예상침하량의 분포범위의 편차가 너무 커서 분석시 관련하기를 정하는데 어려움이 있으나, 각 방법간의 편차율을 비교하여 보면 캐릭션업체 Monden방법보다 5~26%정도 크고, Monden방법과 Asaoka방법은 4~16%정도의 차이를 나타냈다. 또한 Asaoka방법과 Curve Fitting방법은 ±2~5%정도의 차이를 나타냈다.

이와 같은 원인은 분석시 후반부 계측자료의 변화량이 크기 때문에 휘구분석시 차이가 난 것으로 판단된다.

따라서 이와 같은 편차율은 기초로 판단하여 보면 Asaoka방법과 Curve Fitting방법은 거의 편차가 없는 것으로 나타나서 이 두방법을 평가기준으로 결정하였다.

2. 교란효과를 고려한 압밀계수의 산정

수평방향 압밀계수(Cv)는 연직 배수제 설계에 있어서 매우 중요한 변수인데, 설계시 표준압밀시험으로 구한 수직 방향 압밀계수(Cv)와 같은 값은 사용하고 있다. 그러나 실험식 결과에 예측한 압밀속도와 현장에서의 실제 압밀속도는 많은 차이를 나타내고 있다. 따라서 현장 점착량을 바탕으로 신뢰성있는 압밀계수를 추정하는 역학적의 과정이 필수적이다.

따라서, 압밀속도와 가장 밀접한 관계가 있는 압밀계수를 설측 질하자료를 이용하여 Curve Fitting 방법, Asaoka 방법, Monden 방법으로 이상적인 경우의 Barron식과 교란효과를 고려한 Hansbo식을 이용하여 각각의 압밀계수를 구하였다. 또한, 연직 배수제 타입에 발생되는 교란효과를 타수계수 감소비(ε)과 교란영역비(S)를 변화시키 압밀계수로 구하였다.

그림 1은 각 타입간격별로 Barron식을 사용했을 경우 설측자료로부터 구한 압밀계수를 나타낸 것이다.

A. B공법에서 타입간격이 1.0m, 1.2m, 1.4m, 1.6m일 경우 수평압밀계수를 산정한 결과, 타입간격이 넓음수록 압밀계수는 크게 나타났고, 실험식으로 구한 압밀계수(0.000381~0.000455cm²/s)와 비교할 때 타입간격 1.0m에서는 0.5~0.9배의 범위로, 1.2m에서는 0.7~1.2배, 1.4m에서는 0.9~1.5배, 1.6m에서는 1.7~2.5배의 범위로 나타났다.

C공법에서는 타입간격이 1.0m, 1.5m일 경우 수평압밀계수를 산정한 결과 타입간격이 넓음수록 압밀계수는 크게 나타났다. 실험식으로 구한 압밀계수(0.000411cm²/s)와 비교할 때 타입간격 1.0m에서는 0.7배의 범위로, 1.5m에서는 1.4~1.6배의 범위로 나타났다.

이는 교란효과와 배수저항을 무시한 이상적인 경우의 Barron식을 사용해서 역계산한 결과이며 일반적으로 Cv가 Cw보다 크지만 Barron의 제안식을 사용하여 Cw=Cv로 설계할 경우는 교란효과와 배수저항을 고려해서 Cv를 작은값, 즉 Cw=Cv로 간주하고 설계하는 것을 의미한다.

Barron식을 사용했을 경우 설측자료로부터 구한 압밀계수는 다음 표 3과 같다.
교란효과와 배수저항을 고려한 연직 배수계의 압밀 거동

<table>
<thead>
<tr>
<th>Method</th>
<th>Curve fitting $C_h$ (cm$^2$/s)</th>
<th>Asaoka $C_h$ (cm$^2$/s)</th>
<th>Monden $C_h$ (cm$^2$/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1.0m</td>
<td>$3.93 \times 10^{-4}$</td>
<td>$3.26 \times 10^{-4}$</td>
<td>$2.13 \times 10^{-4}$</td>
</tr>
<tr>
<td>A 1.2m</td>
<td>$5.44 \times 10^{-4}$</td>
<td>$4.13 \times 10^{-4}$</td>
<td>$3.36 \times 10^{-4}$</td>
</tr>
<tr>
<td>A 1.4m</td>
<td>$6.83 \times 10^{-4}$</td>
<td>$6.44 \times 10^{-4}$</td>
<td>$4.42 \times 10^{-4}$</td>
</tr>
<tr>
<td>A 1.6m</td>
<td>$1.146 \times 10^{-3}$</td>
<td>$9.09 \times 10^{-4}$</td>
<td>$6.52 \times 10^{-4}$</td>
</tr>
<tr>
<td>B 1.0m</td>
<td>$2.55 \times 10^{-4}$</td>
<td>$2.05 \times 10^{-4}$</td>
<td>$1.78 \times 10^{-4}$</td>
</tr>
<tr>
<td>B 1.2m</td>
<td>$3.01 \times 10^{-4}$</td>
<td>$3.17 \times 10^{-4}$</td>
<td>$2.44 \times 10^{-4}$</td>
</tr>
<tr>
<td>B 1.4m</td>
<td>$4.05 \times 10^{-4}$</td>
<td>$3.43 \times 10^{-4}$</td>
<td>$3.13 \times 10^{-4}$</td>
</tr>
<tr>
<td>B 1.6m</td>
<td>$7.18 \times 10^{-4}$</td>
<td>$6.53 \times 10^{-4}$</td>
<td>$5.85 \times 10^{-4}$</td>
</tr>
<tr>
<td>C 1.0m</td>
<td>$3.36 \times 10^{-4}$</td>
<td>$2.83 \times 10^{-4}$</td>
<td>$2.27 \times 10^{-4}$</td>
</tr>
<tr>
<td>C 1.5m</td>
<td>$7.06 \times 10^{-4}$</td>
<td>$5.82 \times 10^{-4}$</td>
<td>$4.66 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

그림 2는 각 공법별로 타임간격 1.0×1.0m일 경우 투수계수 감소비($\eta$)를 1~25, 교란영역비(S)를 $d_e=2d_m, d_e=3d_m$의 2단계로 변화시켜 계측한 침하자료로부터 침면의 수평 압밀계수를 전산한 결과를 나타낸 것이다.

A공법의 경우 Asaoka 방법으로 계산한 수평 압밀계수는 Monden 방법으로 계산한 수평 압밀 계수보다 약 1.5배 정도 크게 나타났으며, B공법의 경우에는 약 1.2배, C공법의 경우에는 약 1.3배 정도 크게 나타났다. 이는 김(13)의 약 1.24배로 나타난 것과 비교할 때 거의 유사한 결과로 나타났다.

투수계수 감소비를 1~25, 교란영역비를 $d_e=2d_m, d_e=3d_m$의 범위로 하여 적용하여 계산한 수평 압밀계수는 실험 압밀시험으로 구한 압밀계수와 비교함에 Asaoka 방법에서는 공법들간에 약간의 차이는 있지만 약 0.7~17.9배의 범위에서, Mon-den 방법에서는 약 0.6~12.8배의 범위에서 나타났다.

이상과 같은 결과로부터 역산한 수평 압밀계수는 투수계수 감소비($\eta$)와 교란영역비(S)의 증가에 따라 증가하였는데, 이와 같은 원인은 계측한 자료의 압밀속도는 일정한 대교란의 효과를 증가시키면서 압밀계수를 산산한 결과에 따른 것이다.
3. 교란지역의 투수계수(ks) 변화에 의한 압밀도 분석

그림 4는 A, B, C공법을 타일간격 1.0m로 설치 한 지반에서 시간에 따른 압밀도의 변화를 교란 영역의 투수계수(ks)를 변화시키면서 실측한 점하 람을 삼각선, Curve Fitting, Asaoka, Monden의 방법에 의한 실측 압밀도곡선과 비교, 분석한 것
이다.

제안식을 비교하여 보면 교란지역의 투수계수
가 작아질수록 Hansbo, Onoue의 제안식 모두 에서 압밀시간이 지연되었으며 압밀도의 변화폭 이 상당히 크게 나타났다. 또, Hansbo, Onoue의 제안식은 거의 같은 곡선 형태를 나타내고 압밀 도 90%에 도달하는 시간은 거의 유사하게 나타
났다.

A공법의 경우 ks=k로 해석한 결과에서 좌측점
하량 예측방법과 비교할 때 Hansbo식과 Onoue식 모두 200일에서 압밀도를 17~28% 정도 크게 평가
하는 것으로 나타났다. ks=1/2k로 해석한 결과에
서는 Curve Fitting방법에 의한 압밀도곡선과 일
치하는 경향을 나타냈으며, Asaoka, Monden방법
에 의한 압밀도곡선과의 비교에서는 압밀도 60~
70%까지 일치하다가 시간이 갈수록 차이가 점점 커지는 것으로 나타났다. ks=1/3k로 해석한 결과
에서의 삼각선방법에 의한 압밀도곡선과 비교할
때 초기 압밀분부터는 상당한 차이가 있다가 압밀도 70~80%범위내에서 일치하는 것으로 나
타났다.

B공법의 경우는 ks=k로 해석한 결과에서 A공
법과 유사하게 Hansbo식과 Onoue식은 압밀도를
11~28% 정도 크게 평가하는 것으로 나타났다.
ks=1/2k로 해석한 결과에서는 Asaoka법에 의
한 압밀도곡선과 일치하는 경향을 나타내었으며,
Curve Fitting 방법에 의한 압밀도곡선과의 비교
에서 2~3% 정도 작게, Monden법에 의한 압
밀도곡선은 3~4% 정도 크게 평가하는 것으로
나타났다. ks=1/3k로 해석한 결과에서는 삼각선
방법에 의한 압밀도곡선과 비교하여 초기 압밀부
분부터 압밀도 60%까지 일치하다가 시간이 갈수
록 차이가 나는 것으로 나타났다.

C공법의 경우는 ks=k로 해석한 결과에서 150
일을 기준으로 할 때 Hansbo식과 Onoue식은 압
밀도를 18~33% 정도 크게 평가하는 것으로 나타

Fig. 2 Results of coefficient of consolidation with variation of \( C_h \) and S

(C) C method

Fig. 3 Comparison of degree of consolidation with variation of \( C_h \)
나다. $k_s = 1/2k_v$로 해석한 결과에서는 B공법과 마찬가지로 Asaoka방법에 의한 암밀도곡선과 일치하는 경향을 나타냈으며, Curve Fitting, Morden 방법에 의한 암밀도곡선과 비교에서는 3~4% 정도 암밀도 차이를 나타냈다. $k_s = 1/3k_v$로 해석한 결과에서는 쌍곡선방법에 의한 암밀도곡선과 비교해서 암밀도 60%부분에서 일치하는 것으로 나타났다.

이상과 같이 각 제안식들은 교란영역의 투수계수의 범위를 변화시켜 해석한 결과, 교란지역의 투수계수($k_v$)는 비교란지역의 수직투수계수($k_v$)의 1/2로 해석한 결과에서 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 비교적 잘 일치하는 경향을 나타냈으며, 쌍곡선 방법에 의한 암밀도곡선과는 $k_s = 1/3k_v$일때 암밀도 60~80% 범위 내에서 일치하는 경향을 나타냈다.

(c) C method

Fig. 4 Results of degree of consolidation with variation of $k_s$

4. 교란지역의 직경($d_s$) 변화에 의한 암밀도 분석

그림 5는 A, B, C공법을 타입간격 1.0m로 설치한 지반에서 시간에 따른 암밀도의 변화를 교란 영역의 직경($d_s$)을 변화시키면서 실측치량과 삼각형, Curve Fitting, Asaoka, Morden 등의 방법으로 횠평한 암밀도곡선과 비교, 분석한 것이다.

교란영역의 직경이 증가함수로 Hansbo, Onoue식 모두에서 암밀시간이 지연되고, 암밀도의 변화폭은 교란지역의 투수계수의 변화에 비해서는 작으며 변화율은 두 제안식이 거의 비슷한 경향을 나타내고 있다.

A, B, C공법 모두에서 쌍곡선방법에 의한 암밀도곡선은 제안식들에 비교하여 높은 상당한 차이가 있고, 최종치량이 과대하게 추정됨을 알 수 있으며 이(15)의 연구결과가 유사하게 나타났다.

A공법의 경우에서 $d_s = 2d_m$로 해석한 결과에서 Hansbo식과 Onoue식 모두 Curve Fitting방법에 의한 암밀도 곡선과 일치하였고, $d_s = 3d_m$에서 Hansbo식은 Asaoka방법과 Onoue식은 Morden 방법에 의한 암밀도 곡선과 일치하는 것으로 나타났다. $d_s = 4d_m$에서는 Hansbo식과 Onoue식은 암밀도 60~65%정도에서 쌍곡선방법과 일치하는 경향을 나타냈다.

B공법의 경우는 $d_s = 2d_m$에서 Hansbo식과 Onoue식 모두 Asaoka방법에 의한 암밀도 곡선과 일치하는 경향을 나타냈다. $d_s = 3d_m$에서는 일치한 암밀도 곡선이 없고, $d_s = 4d_m$에서는 Onoue식이 암밀도 60%
정도에서 쌍곡선방법과 일치하는 경향을 나타냈다. 
C공법의 경우에는 \( d_s = 2d_m \)에서 Hansbo식과 Onoue식 모두 Asaoka방법에 의한 암밀도 곡선과 일치하는 경향을 나타냈다. 또 \( d_s = 3d_m \)에서는 Hansbo식에서 Monden방법에 의한 암밀도 곡선과 일치하는 경향을 나타냈다. \( d_s = 4d_m \)에서는 Hansbo식과 Onoue식 모두 암밀도 60%정도까지 쌍곡선방법에 의한 암밀도 곡선과 일치하다가 그 이후에 차이를 나타내는 경향을 보였다. 

이상과 같이 각 제안식들은 교란영역의 직경의 범위를 변화시켜 해석한 결과 교란영역의 직경 \( d_s \)을 Mendrel직경 \( d_m \)의 2배로 해석한 결과에서 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 비교적 잘 일치하는 경향을 나타냈다. 또, 쌍곡선방법에 의한 암밀도곡선과는 교란영역의 직경을 Mendrel직경의 4배로 해석한 결과에서 암밀도 55-65%범위 내에서 일치하는 경향을 나타냈다. 

Jamiolkowski(6), Hansbo(4), Madhav(9)등도 교란영역의 직경에 대하여 이론적 연구와 실험적 경험이 의한 방법으로 \( d_s = 2 \sim 3d_m \)으로 분포한다고 하였다.

(c) C method

Fig 5. Results of degree of consolidation with variation of \( d_s \)

5. 배수지향을 고려한 암밀도 분석

그림 6은 연속배수계의 설계시 배수지향의 영향을 고려하기 위하여 배수지향에 관련된 드레인의 투수계수 \( k_w \)가 비교적 작은 경우(B공법)와 큰 경우(C공법)로 구분하고 검토직경을 사용하여 실측암밀도곡선과 비교한 것이다.

그림 6(a)는 드레이언의 투수계수가 작은 경우에 서의 시간에 따른 암밀도의 변화를 나타낸 것이다. 먼저, Leonard(8)가 제안한 1/2감소직경을 사용해서 해석한 결과를 보면 Barron식의 경우는 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 비교할 때 암밀도 90%에 도달하는 시간을 약 25일정도, Monden방법에 의한 암밀도곡선과는 약 76일정도 작게 평가하는 것으로 나타났다. 이는 유(14)가 1/2감소직경을 사용할 경우 암밀도소요시간을 과소하게 평가한다는 연구결과와 유사하게 나타났다. Yoshihuki식을 사용한 경우에는 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 일치하는 경향을 나타내었고, Monden방법에 의한 암밀도곡선의 경우 약 45일정도 작게 평가하는 것으로 나타났다. 또, 1/4감소직경을 사용해서 해석한 결과에서는 Barron식의 경우 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 비교할 때 암밀도 90%에 도달하는 시간을 약 45일정도 크게 평가하는 것으로 나타났고, Monden방법에 의한 암밀도곡선과 일치하는 경향을 나타냈다. Yoshihuki식의 경우에는 Curve Fitting, Asaoka방법에 의한 암밀도곡선과 비교할 때 암밀도 90%에 도달하는 시간을 약 90일정도, Monden방법에 의한 암밀도곡선과 일치하는 경향을 나타냈다.
압밀도곡선과는 약 40일 정도 크게 평가하는 것으로 나타났다.

![Graph](image)

(a) $k_w=0.02\text{cm/s (B method)}$

(b) $k_w=0.9\text{cm/s (C method)}$

Fig. 6 Results of degree of consolidation with variation of $k_w$

그림 6(b)는 드레인의 투수계수가 큰 경우에서의 시간에 따른 압밀도의 변화를 나타낸 것이다. 그럼에서 나타난 바와 같이 드레인의 투수계수가 크기 때문에 Barron식과 Yoshikuni식이 거의 동일한 것으로 나타났다.

1/2감소직경을 사용한 경우에는 Curve Fitting 방법에 의한 압밀도곡선과 거의 일치하는 경향을 나타냈다. Asaoka방법에 의한 압밀도곡선과 비교할 때 압밀도 90%에 도달하는 시간을 약 28일 정도, Monden방법에 의한 압밀도곡선과는 약 72일 정도 작게 평가하는 것으로 나타났다. 또, 1/4감소직경을 사용한 경우에는 Curve Fitting, Asaoka 방법에 의한 압밀도곡선과 비교할 때 압밀도 90%에 도달하는 시간을 약 40 68일 정도 크게 평가하는 것으로 나타났고, Monden방법에 의한 압밀도곡선과 거의 일치하는 경향을 나타냈다.

이상과 같은 결과로부터 배수지역의 영향은 직경감소가 커질수록 압밀이 지연되는 경향을 보였고, 드레인의 투수계수가 작은 경우에 26 68일 정도, 큰 경우에는 25 45일 정도로 드레인의 투수계수가 작은 경우에 약 3 23일 정도 더 큰 영향을 미치는 것으로 나타났다. 따라서 연직 배수계를 설계할 경우, 드레인의 투수계수가 작은 경우에는 그 영향을 고려해서 감소직경을 사용하는 것이 합리적이라고 판단된다.

### 적 요

연직 드레인의 이론식에서 교란효과와 배수지역에 관련된 변수들을 변화시켜 구한 이론곡선과 현장의 실측자료를 쌍곡선, Curve Fitting, Asaoka, Monden방법에 의한 압밀도곡선을 비교 분석하여 다음과 같은 결론을 얻었다.

1. 쌍곡선방법에 의한 압밀도곡선은 Curve Fitting, Asaoka, Monden방법에 의한 압밀도곡선과 비교할 때 압밀도가 과소하게 나타났다.

2. 현장 실측자료로부터 얻은 수평방향 압밀 계수($C_r$)와 실험 시험에서 얻은 수직 방향 압밀 계수($C_v$)의 전체적인 범위는 교란효과와 배수지역을 무시하는 이상적인 경우에서는 $C_r(0.5 2.5)C_v$, 교란효과와 배수지역을 고려한 경우에는 $C_r(2 3)C_v$의 범위로 나타났다.

3. 역해식에 의한 교란된 지역의 투수계수($k_r$)는 비교한 지역의 수직투수계수($k_v$)의 1/2로, 교란 지역의 직경($d_r$)은 Mendred직경($d_m$)의 2배일 때 실측량행에 의한 압밀도 곡선과 유사하게 나타났다.

4. 연직배수계 설계에 따른 배수지역의 영향은 직경감소가 커질수록 압밀이 지연되는 경향을 보였고, 드레인의 투수계수가 작은 경우가 큰 경우보다 영향이 더 큰 것으로 나타났다. 따라서 감소 직경을 사용하는 설계법은 교란효과와 배수지역의 영향을 고려하는 것이 합리적이다.
인용문헌