A Study of mixing characteristics of unlike impinging streams doublet injector

Jae-Seob Han* · Seon-Jin Kim** · Yoo Kim*

ABSTRACT

Mixing characteristics of unlike impinging streams doublet injectors have a great effect on combustion stability and combustion efficiency for liquid rocket engine. In this study a cold test was carried out, using water and TCE as simulants, in order to examine the effect of design parameters such as impingement angle, orifice diameter ratio and momentum ratio on the mass distribution and mixing quality.

초 록

액체로켓에서 설계된 추진제를 엔진내로 분사하고, 미립화 및 혼합시키는 분사기로서, 날리 사용되는 이때의 초록은 분사기의 혼합특성은 연소안정성 및 연소효율에 주요한 영향을 미치는 인자이다. 따라서 본 연구는 엔진의 중도 분사기의 설계변수인 중력가, 오리피스 직경비 및 음속밀도가 혼합특성에 미치는 영향을 규명하기 위하여, 추진제대용으로 물과 TCE를 사용하는 미립소시험법에 의해서 수행되었다.

기호설명

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>Mixture ratio</td>
</tr>
<tr>
<td>R</td>
<td>MR/(1+MR), Injected</td>
</tr>
<tr>
<td>N_r</td>
<td>Rupe Number</td>
</tr>
<tr>
<td>M_F_i</td>
<td>Mass fraction at ith cell</td>
</tr>
<tr>
<td>C</td>
<td>(\rho_i V^2_0 d_i / \rho V^2 d_j)</td>
</tr>
<tr>
<td>E_m</td>
<td>Mixing quality</td>
</tr>
<tr>
<td>r</td>
<td>MR/(1+MR), at any cell within the spray</td>
</tr>
<tr>
<td>CMF</td>
<td>Cumulative mass fraction</td>
</tr>
<tr>
<td>Efficiency</td>
<td>E_m x 100</td>
</tr>
</tbody>
</table>

1. 서 론

유체의 원하는 크기의 미립자로 만드는 기술은 도색, 소화실비, 자동차, 항공기 및 로켓등 아주 다양한 분야에서 필수적인 기술로 요구되어 왔다. 따라서 미립화 기술은 오랜 기간에 걸
2. 혼합도

혼합도는 분산된 R (분산된 산화제 또는 염료 질량유동율과 분산된 전체질량유동율과의 비) 과 각 셀에서의 r (각 셀에 채집된 산화제 또는 염료의 질량유동율과 채집된 전체질량유동율과의 비)에서의 점량 가중된 평균으로 정의되며, 결국 혼합도를 백분율로 표현함으로써 혼합성능을 구할 수 있다. 이러한 것은 도식적으로 Fig. 1과 같이 표현되고, 일정 조건의 경우는 채집기에 채집된 모든 섹의 r이 주입된 R과 같은 경우에는 의미를 잃어버리고, 혹은 심한 일정조건으로서 물리적인 연속은 채집기에 채집된 모든 섹의 산화계 또는 염료가 주입된 염료 또는 산화제로부터의 편안을 의미하는 것으로 결국 혼합성을 나타낸다. 이러한 편안도를 시험하는 표현은 식(1)과 같이 나타낼 수 있다.

![Fig. 1 Cumulative mass fraction vs. r](image)

$$Em = 1 - \frac{\int_{0}^{R} (R-r) dM_r}{\int_{0}^{R} dM_r} - \frac{\int_{0}^{R} (R-r) dM_f}{\int_{0}^{R} dM_f}$$

(1)

$$Em = 1 - \sum_{m=0}^{n} \frac{MF_r (R-r)}{R} - \sum_{m=0}^{n} \frac{MF_f (R-r)}{R-1}$$

(2)

참고로 혼합도는 이상화 유동연속을 포함하고 있는 모의에의 유한한 양을 채집함으로써 얻어질 수 있기 때문에, 식(1)은 유한차분의 형태로 식(2)와 같이 정렬될 수 있다.
이러한 표현을 사용하면, 완전한 혼합은 \(E_m \)이 1의 값으로 표현될 수 있고, 완전한 불균일성은 \(E_m \)이 0의 값으로 표현된다.

3. 실험장치 및 방법

실험은 추진체 모의액을 사용하는 비연소실험법에 의해서 수행되었고, 실험장치는 모의액을 분사기까지 공급하는 공급장치, 액체를 미립하 및 혼합시키는 분사기, 분사된 액체를 위치 고수로 재집한 수 있는 채집기로 구성되어있고, Fig. 2는 실험장치의 계통도이며, 분사기는 총동 형 분사기의 기하학적 변수를 쉽게 변화할 수 있도록 가변형을 설계 및 제작하였다. Table 1은 20℃, 표준대기압 상태에서의 추진체 모의액의 물성치이다.

1950년 Jack Rupe는 이유체 충돌 분사기의 혼합특성에 중요한 영향을 미치는 무차원변수로 개발한 허버의 \(N_R \)을 제시하였고, \(N_R \)이 0.5일 때 최대 혼합도를 나타낸다고 보고하였다. 따라서 본 연구의 실험조건은 \(N_R \)이 0.5로 일정한 상태에서 설계변수의 변화와 \(N_R \)의 변화에 따른 혼합 및 질량분포특성을 고찰하기 위해 Table 2와 같은 값을 설정하였다.

\[
N_R = \frac{1}{1 + \frac{\rho_0 \nu_0 d}{\rho_1 \nu_1 d_1}} 1 + \frac{\rho_T C E V_T C E}{\rho_W A T E R V_W A T E R} (3)
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variables</th>
<th>Diameter (mm)</th>
<th>Jet Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impingement Angle</td>
<td>C</td>
<td>Ori-H</td>
<td>Ori-T</td>
</tr>
<tr>
<td></td>
<td>Angle (Deg.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>30.0</td>
<td>0.49</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>60.0</td>
<td>0.53</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>90.0</td>
<td>0.61</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>120.0</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Diameter Ratio</td>
<td>1.0</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>60.0</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Table 2 Experimental conditions

채집기는 모든 실험조건에 대해 수집된 모의액의 95% 이상이 채집될 수 있도록 증동점에서 수직하방으로 40mm 면적군에 평행하게 설치하였고, 실험시 분무초기 및 후기에 발생하는
 Chrysler의 연료부에 사용됨을 제거하고자, 쌍기와 같은 연료부분을 사용하여 쌍기 상부를 단순화함으로써 모의내구를 확보하였다. 실험조건에 따라 모의액이 쌍기 전체에 떨어진 모의액을 비교하며, 모의액은 한쪽에 집중하는 현상 때문에 모든 쌍기에 대하여 동일한 쌍기시간을 적용하지 못하고, 가능한 모든 쌍기에 대해 쌍점할 수 있는 최대시간을 적용하였고, 쌍점시간은 약 30 ~ 40 초였다. 사전은 시험에 사용된 쌍점기와 분사기이다.

Photo. 1 Apparatus for measuring the mass distribution

4. 결과 및 고찰

분사기에서 분사된 모의액의 쌍 점량무동출과 쌍점기에 제일된 모의액의 쌍 점량무동출의 비율 쌍점효율은 모든 실험조건에 대해 95% 이상의 결과를 나타내었다.

Fig. 3은 C를 1로 유지하면서 TCE 오리피스 지름 0.98mm, 물 오리피스 지름 0.98mm, TCE 분류속도 16m/s, 물 분류속도 19.3m/s, 쌍각 60°인 조건에서 쌍점된 점량분포도로서, x-y축은 쌍점기 셨의 위치고, z축은 쌍점된 점량분포를 의미한다. 두 분류의 충돌반경이 같기 때문에 두 분류가 충돌후 경해점을 중심으로 모든 분류가 분사기 면에 수직인 방향으로 흘러분할

Fig. 4는 C를 0로 유지하면서 TCE 오리피스 지름 0.98mm, 물 오리피스 지름 0.49mm, TCE 분류속도 16m/s, 물 분류속도 27.4m/s, 쌍각 60°인 조건에서 쌍점된 점량분포도로서, x-y축은 쌍점기 셨의 위치고, z축은 쌍점된 점량분포를 의미한다. 점량은 충돌점이 위치한 6면 빌 부분에서 가장 많이 쌍점되었고, y축에 대해서는 대칭적인 분포를 나타내고 있으나, x축에 대

\[d_{TCE} = 0.98mm, \ d_{water} = 0.98mm \]
\[V_{TCE} = 16m/s, \ V_{water} = 19.3m/s, \ \theta = 60° \]

\[d_{TCE} = 0.98mm, \ d_{water} = 0.49mm \]
\[V_{TCE} = 16m/s, \ V_{water} = 27.4m/s, \ \theta = 60° \]
해서는 비대칭적인 분포를 하고 있다. 이러한 현상은 두 분류가 충돌하는 충돌점에서 경계점이 형성되고, 충돌이 발생한 두 분류의 진행방향은 다르기 때문에 전자부분이 경험적으로 분산시킨 분류가 문제에 대해 수직인 방향으로 변형되고, 또한 충돌이 발생한 부분은 초기 진행방향을 그대로 유지하기 때문에 앞발급형성의 진방분포를 나타내었다.

\[d_{TCE} = 0.98\text{mm}, \quad d_{Water} = 0.98\text{mm} \]
\[V_{TCE} = 16\text{m/s}, \quad V_{Water} = 27.4\text{m/s}, \quad \theta = 60^\circ\]

Fig. 5 Mass distribution formed by unlike impinging two jets

Fig. 6 is the influence of the impingement angle on mixing quality.

두 분류의 충돌점이 결정하는 구에 Fig. 3에서와 같이 x-y축에 대칭인 현상을 보였으며, 절제중의 중심 위치에서 최대 분포를 나타내지 못하고, 운동량이 큰 분류의 초기 진행방향으로 향하는 경향을 나타내었고, 작은 운동량의 분류는 큰 운동량의 분류에 의해 변형을 받아 좌우로 널리 분포하는 경향을 보이면서 두 분류의 침투점을 다르게 하였다.

Fig. 6은 응용의 변화가 초입부분에 미치는 영향으로, 연료의 질량이 변화하는 경우에 대한 실험결과이다. 운동량의 중량비는 모두 에너지

Fig. 7 The effect of orifice diameter ratio on mixing quality.

Fig. 7에 놓은 오리처럼의 지름은 0.49mm 2.05mm로 변화하면서 두 분류의 C를 1로 일정하게 유지할 때 결과이다. 두 분류의 지름비가 1에서 떨어질 때, 따라 Fig. 4에서와 같이 앞 빨
금강은 형상의 점량분포를 나타내면서 혼합도는 감소하였고, 두 오리피스의 면적이(TCE/물)가 0.4~2.58 사이에서는 혼합성능의 변화가 거의 없었다. 또한 혼합도는 TCE/물 면적이 둘 를 /TCE의 면적이 같은 때 동일한 혼합성능을 나타내었다.

3. 두 분유의 면적이 동일한 상태에서, 운동량 분비의 변화는 혼합성능에 극한한 감소를 나타내었다. 따라서, 분유를 통해 분사되는 두 유체의 설계혼합비 조건에서 최적의 혼합성을 얻기 위해서는 운동량비를 1로 유지하면서 동일 오리피스 면적을 갖도록 설계해야하며, 그렇지 못한 경우에는 운동량비를 1로 일정하게 유지하면서 오리피스 면적비를 달리하는 설계법면이 혼합성능의 감소를 줄일 수 있는 방법이었다.

참고 문헌

2. 김 유동, "아이로드로럼유전용 Unlike Triplet Impinging 인젝터(O-F-O)의 분무 및 연소성능에 관한 연구", 한국항공우주공학회지, 제26 권 1호, 1997.