열변형 해석 기구를 통한 선상 가열에서의 가열선 수정에 관한 연구

김용균*, 신종계**

A Mechanics-Based Determination of Heating Lines in Line Heating Process

Kim, Yong Gyun* and Shin, Jong Gye**

요 약

선체는 많은 디자인(Compound curvature)을 가진 판들로 이루어져 있으며 이러한 판들은 가공하기 위해서, 조선소에서는 선상 가열(Line heating) 방법인데 사용되어 왔다. 선상 가열법에서 가열선을 결정하는 방법으로 지금까지는 기하 해석을 이용하여 가열선을 재시차해 왔다. 그러나 기하해석으로 구한 가열선에 대한 역학적 검증이 이루어지지 않고 있으며 여러 가열선 중 어떤 가열선을 선택할 것인가에 대한 연구도 이루어지지 않고 있다.

본 논문에서는 기하해석을 통해 구한 가열정보를 얻었을 때 이를 역학적으로 검증하여 실제로 구한 가열정보대로 가공을 하였을 때 나타날 수 있는 판의 가동을 예측하였다. 또한 본 논문에서는 적정 가열선을 찾는 적응 과정을 재시차하였다. 가공정보로부터 예측된 가동형상을 구한 후 역학적 해석을 비교하여 가동형상이 목적형상의 오차범위 내에 존재할 때 가열선의 조정변수를 변화시켜 적절한 가동정보를 확득하였다.

*Keywords: 선상가열(Line Heating), 기하해석(Kinematics Analysis), 열응력해석(Kinematics Analysis), 동역학적(Thermal-stress Analysis), 유한요소법(Equilibrium Force, FEM)

Abstract

In Line Heating method, heating line is determined by kinematics analysis. But the heating line, which is solved by kinematics analysis, doesn't verify by the point of physical analysis and the choice problem in many heating line doesn't determine. In this paper, the simulator is developed. When we get the processing information at the kinematics analysis, simulator can estimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator, we estimate deformed shape from the processing information. After this we compare
1. 서론

선성가열 자동화를 위해서는 가공정보의 전산화가 필요하다. 이를 위해서는 선성가열작의 관의 거동에 대한 열매소성 해석, 가열선 산출을 위한 기하 해석에 대한 연구가 필요하다.

본 논문에서는 선성 가열에서의 기하적 결정에 대한 연구를 수행했다. 기존 가열선 산출 시스템에서 계산된 기하적 정보의 검증을 위해서 일반적인 방법에서 선성 가열에 의한 열변형 예측 시뮬레이션을 개발한. 열변형 예측 시뮬레이셔에 의한 시뮬레이션 결과 중 가공시각과 가공오차의 비교를 통해서 가상 가열선 정보를 찾기 위한 연구를 수행했다. 본 논문의 구상은 크게 가한 해석 부분과 열변형 예측 부분 그리고 형상 비교 부분으로 구분된다. 기열선 산출을 위해서 서울대학교 조선화공학부에서 개발한 ICALM 시스템을 이용했다. ICALM은 초기형상의 목적형상의 기하적을 통해서 분포된 strata를 계산하기 위한 방법이다. 열변형 예측 시뮬레이션은 ICALM에서 산출된 기열선 정보를 이용하여 연속적으로 가공형상을 찾는다. 각 기열선에서의 변형량을 이용하여 이에 상응하는 등가등와 등 기름메트를 계산한다. 공통별에서는 열변형 예측 시뮬레이션을 이용하여 가열선의 정보가 들어오면 이를 이용하여 등가등화, 가공속도,

2. 기하학적 해석

목적형상이 주어진 경우 초기형상에서 목적형상에 접근하기 위한 초기형상에 주의해야 할 변형량을 계산한다. 여기에 구한 변형량은 기열선을 결정하는데 중요한 역할을 한다. 선성가열에서 판의 변형은 가열선에 수직인 방향으로 가장 많이 발생한다. 따라서 변형량이 최소가 되는 방향으로 가열선을 진행시키면 가장 효과적인 가열선을 구할 수 있다. 변형량는 식 (1)과 같이 면내 변형량과 금형 변형량으로 나뉘게 된다. e^m은 면내 변형량이고 e^b는 금형 변형량이다. 금형 변형량은 curvature로 나타낼 수 있다.

$$ e = e^m + e^b $$ \hspace{1cm} (1)

가열선의 개수를 결정하기 위해서는 목적이상의 형상정보에 따라 기초선을 먼저 결정하고, 가열선 조정 변수로써 적정 각 변형량을 결정한다. 그 후 기준선의 양 끝점에서 선을 얽힌 뒤 가면서 점의 개수를 늘려 가든다. 가열선의 방향은 금형 변형량의 방향이나 면 내 변형량의 방향으로 결정된. 금형에 열변형이 주어질 때 변형량은 가열선에 수직인 방향으로 가장 큰 형상변화를 보인다. 이를 역으로 이용하여 가열선의 방향을 주 변형량과 수직인 방향으로 결정하면 가공형상의 목적형상과 근접하게 되는 결과를 얻게 된다. 위에서 결정한 가열선의 시작 위치에서 변형량의 방향을 따라 가열선의 방향을 연속적으로 계산한다. 면내 변형량과 금형 변형량 중 각 위치에서 주가되는 변형량의 방향으로 가열선을 진행시킨다.

3. 열변형 해석

2 장에서 결정한 가열선을 이용하여 가공한 경우의 가공형상은 결정한다. 목적형상과 가공조건을 고려하여 기하 해석 부분에서 가열선의 정보가 들어오면 이를 이용하여 등가등화, 가공속도,
가공시간 등을 계산한다.

초기 가열선을 결정하는데 있어서 결정이 가능한 변수는 하나의 가열선에 의해 길어질 수 있는 각 변형량이다. 각 변형량은 가열선 산출 프로그램에서는 가열선의 조정변수로서의 역할을 하고, 열변형 해석 기구에서는 가공정보로부터의 역할을 수행한다.

앞의 2 장에서 목적하상에 접근하기 위해 초기 하상에 주어지는 변형량의 분포를 구하였다. 앞에서 구한 변형량 분포로부터 응력은 Hook’s law로부터 구한다. 등가하중은 다음과 같다.

\[
f_x = \int_{(1-\nu^2)}^{E} (\varepsilon_x^e + v\varepsilon_y^e) dydz \tag{2}
\]

\[
f_y = \int_{(1-\nu^2)}^{E} (\varepsilon_y^e + v\varepsilon_x^e) dydz \tag{3}
\]

\[
M_x = -\int_{(1-\nu^2)}^{Ez} (\kappa_x + v\kappa_y) dydz \tag{4}
\]

\[
M_y = -\int_{(1-\nu^2)}^{Ez} (\kappa_y + v\kappa_x) dydz \tag{5}
\]

Fig. 1 Determined location of the equivalent forces

등가하중의 위치는 변형량 분포로부터 구한다. 변형량이 음이 되는 영역은 수축이 이루어지는 부분이고, 변형량이 양이 되는 영역은 평형이 이루어지는 부분이다. 변형량의 음으로 양이 되는 점은 critical point가 되어 이 부분에서 등가하중이 주어지게 된다.

가공속도는 각 변형량이 결정되면 Lee(1999)등이 제안한 열탄소성 해석에서의 변형관계식에서 구할 수 있다. 가열선에 의한 풍문의 변형은 angular distortion와 shrinkage로 간략화하였고, 응력변수로서는 토치에 의해 원판에 가해지는 열량 Q 그리고 토치의 이동속도 v가 있다.

가공시간은 토치이동소수에 들어오는 시간 하에 순수히 토치에 의해 완성되는 작업시간을 가공시간으로 정의하였다. 한 가열선에서 다른 가열선으로 이동하는 시간이나 토치이동소수 시간 등은 논외로 하였다.

\[
\theta_x = b_x + b_y + \frac{1}{v} + b_v Q + b_y + b_y \frac{Q}{v} + b_x + b_x \frac{Q}{v} \tag{6}
\]

\[
\theta_y = b_x + b_y + \frac{1}{v} + b_v Q + b_y + b_y \frac{Q}{v} + b_x + b_y + b_y \frac{Q}{v} \tag{7}
\]

\[
\delta_x = b_x + b_y + \frac{1}{v} + b_v Q + b_y + b_y \frac{Q}{v} + b_x + b_y + b_y \frac{Q}{v} \tag{8}
\]

\[
\delta_y = b_x + b_y + \frac{1}{v} + b_v Q + b_y + b_y \frac{Q}{v} + b_x + b_y + b_y \frac{Q}{v} \tag{9}
\]

4. 비교

2 장과 3 장의 과정을 따라 가공형성이 구해지면 이 가공형성이 목적형상과 어떤 차이가 있는지 를 알아야 한다. 우선 가공형상과 목적형상은 적당한 간격으로 끝날 형상의 정보를 얻는다. 가공형상과 목적형상의 차이가 최소가 되도록 translation과 rotation을 외롭게하여 계산한다. 두 차가 최소가 될 때 가공형상과 목적형상의 비교한다. 가공형상과 목적형상은 norm의 형태로 구한다.
5. 가열선의 결정

큰 흐름은 기하 해석 부분과 열변형 해석 부분 그리고 비교 부분으로 나누어진다. 목적형상을 입력으로 받아 기하해석 부분으로 목적형상의 곡면정보를 전달한다. 곡면정보에 따라 초기형상에 주어져야 하는 변형률의 분포를 결정하고 그 결과를 이용하여 가열선을 결정한다. 가열선의 결정에는 가공변수가 필요하다. 여기서 하나의 가열선에 대한 각 변형량이 가공변수가 된다. 가공변수가 결정되면 변형률 분포를 고려하여 가열선의 개수와 방향이 결정된다.

열변형 해석 부분은 기하 해석 부분의 결과값들을 이용하여 가공형상을 계산하는 부분이다. 가열선을 고려하여 일반적인 모델에 대해 shell 요소를 사용하여 모델링 한다. 기하 해석 부분의 결과를 이용하여 가공속도와 가공시간 그리고 등가 힘을 계산한다. 가공속도는 가공변수를 고려하여 결정된다. 각 변형량이 작을수록 가공속도는 떨어지게 된다. 가공시간은 가열선을 따라 특정가 이동하는 시간을 의미한다. 등가하중은 변형률 분포로부터 응력을 계산하여 이에 따라 결정된다. 위 작업을 통하여 가공형상을 구할 수 있다.

비교 부분은 열변형 해석 부분에서 구한 가공형상과 초기의 목적형상을 비교하여 가공형상이 목적형상에 근접하게 접근하였는지를 판단하는 부분이다. 오차범위를 설정하여 가공형상이 오차 범위 내에 존재하게 되면 이 때의 가열선 가공정보가 최종 가공정보가 된다. 가공형상이 오차범위 내에 존재하지 않은 경우에는 다시 기하해석 부분으로 돌아가 가공변수를 조정하여 새로운 가공정보를 얻게 된다. 가공정보에는 가열선의 개수, 가열선의 방향, 토치의 이동속도, 가공시간, 오차범위 등이 있다.

이상적인 결과는 오차가 작으면서 가공시간도 적을 것이다. 일반적으로 오차를 줄이려면 더 많은 가열선을 필요로 하게 되지만 한 가열선 당 필요로 하는 변형률은 줄어들게 되어 가공속도는 빨라지게 된다. 모델에 따라 가열선을 늘리므로 인해 오차를 허용하게 줄일 수 있는 모델도 있고, 가열선이 많아 늘리고서도 효과적으로 오차를 줄 이지 못하는 모델도 있다.

6. 결과

1차목 심리형형상
각 변형량이 작을수록 가공형상은 목적형상에 접근한다. Fig. 3에서 알 수 있듯이 각 변형량이 0.02일 때는 가공형상이 거의 평판에 가깝지만 각 변형량이 0.01인 경우에는 가공형상과 목적형상이 거의 일치한다. Fig. 4에서는 각 변형량과 토치의 가공속도를 늘리며 전체 가공시간과 가공오차를 나타낸 그래프이다. 각 변형량이 작을수록 가공속도는 커지고 가공시간도 많이 줄어지면서 가공오차는 줄어들고 있다.

2차목 saddle 형상
saddle 모델의 경우 Fig. 6에서와 같이 가열선의 개수를 늘리면 가공시간을 감소시킬 수 있다. 그러나 가공형상은 크게 개선되지 않고 있다. 이런 경우 가공오차 보다는 가공시간에 초점을 맞추어 최종 가공정보를 결정하여야 한다.

일반형상
일반모델의 경우 가열선의 개수를 늘리지 않고도 가공형상과 목적형상과의 오차를 허용하던 줄일 수 있다. 일반적으로 가열선의 개수를 늘리게 되면 가공시간이 늘어난다고 있지만 이 경우에는 Fig. 8의 그래프와 같이 가열선을 증가시킴에 따라 가공시간이 줄어들다가 다시 늘어나는 경향을 보이고 있다.
Fig. 3 Compare a cross section of cylinder Model

Fig. 4 Relationship among processing velocity, time and error of cylinder model

Fig. 5 Final heating line for cylinder model

Fig. 6 Relationship among processing velocity, time and error of saddle model

Fig. 7 Final heating line for saddle model

Fig. 8 Relationship among processing velocity, time and error of general model
7. 결론

본 논문은 기하학적 해석을 통해 얻은 기공정보를 역학적 해석을 통하여 실제 기공행성과 구해 볼 수 있게 기공정보의 타당성을 격증하였다. 앞서 수행한 예제에서 알 수 있듯이 기하 해석을 통한 기공정보는 매우 적합하다고 할 수 있다. 또한 논문에서는 기발성에 의한 해석을 이용하여 역학적 해석을 예측하기 위한 역학적 해석 기구로서 열변형 예측 시뮬레이터를 개발하였다. 기공정보를 고려하여 자동으로 요소를 생성한다. 요소의 생성에서 고려되는 정보는 기발성의 위치정보와 동가이동에 가해지는 영향에 대한 정보들이, 일반적인 형상에 대해 요소 생성이 가능하다. 모델링이 이루어지고 나면 동가이동을 통한 역학적 해석을 통하여 기공형성 모델을 얻는다. 1차 모델과 2차 모델을 통해 타당성을 격증하였다.

일반적으로 기발성의 기수를 늘리게 되면 기공형성의 정도는 증가한다. 대표적으로 1차 모델의 경우 기발성의 기수에 비례해서 기공형성과 동가이동 간의 오차도 줄어들게 된다. 2차 모델에서는 기발성의 기수를 증가시키게 되면 오차는 줄어들게 되지만 그 효과는 적지 않다. 기발성의 개수를 1계에서 34개로 증가시킴에 따라 기공시간이 0.37mm 줄어들게 되지만 그에 반해 가공시간이 약 14000sec 증가하여 이 경우에 오차보다는 기공시간을 줄이는 형태의 기공정보를 얻는 것이 더 중요하다.

일반적인 형상의 경우 기발성을 많이 늘리지 않고도 오차는 많이 줄어들고 있다. 기발성의 배치가 효과적으로 이루어지고 있음을 알 수 있다.

또 기발성을 늘리게 되면 기공속도도 함께 빨라지기 때문에 기공시간은 오히려 줄어드는 경우로 볼 수 있다. 본 논문에서는 선상가열의 기발성 최적화에 관한 방향을 제시하였다. 선상가열 방법에서는 여러 기공 정보들 중에서 만족할 만한 기공 오차 범위 내에서 기공시간을 최소로 할 수 있는 기공정보의 선택이 중요하다.

참고 문헌

- 노인석, 신종계, 이광한 1995 '유한요소해석에 의한 선상아коло 변형의 시뮬레이션', 대한조선학회 논문집, 제 32 권 제 2 호, pp75-83