
Chan-Sol Ahn and Kwang-Yong Kim

Key Words: Axial-Flow Compressor, RANS (Reynolds-averaged Navier-Stokes), Rotor 37 (NASA rotor 37), Optimal Design, RSM (Response Surface Method), D-optimal

Abstract

Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It is also found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

1. 서론

천공속 휘류압축기는 내부 유동장을 쥐어헤드 형태에 의해 발생하는 이차유동, 외류, 경계층막리, 휘류, 충격파 등으로 인해 매우 복잡한 3차원 유동구조를 갖고 있으며, 특히 충격파/경계층의 상호작용에 의해 발생되는 현상은 터보기계 내부 유동에서 중요한 현상으로 알려져 있다. 따라서 충격파의 발생 범위와 강도, 이로 인해 발생하는 밀도역의 위치 등은 공막학적 성능을 예측하는 데 필수적으로 해석되어야 하는 요소들이다.

Stokes 해법은 이러한 현상을 정확하게 예측하기 위한 중요한 방법으로 사용되고 있다. 전산유체역학(CFD)적 유동해석은 고정을 터보기계 설계를 계획하는 데에 이미 활발히 적용되고 있으며, 최근에는 컴퓨터의 성능이 급속히 향상되어 CFD를 이용한 최적설계가 많은 관심을 모으고 있다. 최적설계의 기법으로서 구배법 (gradient-based method)은 가장 보편적으로 이용되는 방법으로, 최적값의 구배역의 영역에 갈수록 더 가까워질 것이라는 근거를 갖고 있다. 이에 비해 전역적인 최적값을 찾는 반응면 기법 (response surface method)은 구배법에 비해 많은 장점을 갖고 있다. 국부적인 극값도 분석해야 하지 않으며, 필요한 정보는 다양한 방법으로 수집할 수 있다. 또한 다수의 설계점에 대한 최적화 작업을 수행할 수 있으며, 병렬 계산이 용이하다. 이 밖에도 목적함수의 수치해석적 검증을 쉽게 주어 전역적인 최적값을 보다 귀중할 수 있도록 해 준다. 최근에는 이러한 이점을 활용하여 반응면을
이용한 단일 또는 다분야간 최적화 문제라 많이 다루어지고 있다. \(^{(11\sim13)}\)

토브릭바이의 플레이드 설계에 있어, 삼차원 유동구조에 저해한 영향을 미치는 요소 중의 하나
가 변행방향으로의 stacking line일 것이다. 기어의 지장력과 비틀린 플레이드는 유로 내의 공부적
확산을 줄이며 2차 유동을 감소시키고, 이에
따른 에너지 손실을 감소시킨다. 토브릭바이와 그
반대방향으로 기어판을 플레이드에 대한 설계에
이해 Han 등\(^{(16)}\)에 의해 수행된 바 있으며, 토브릭
방향으로 기어판을 플레이드의 경우 2차유동에 의
한 손실이 감소하고 효율이 증대되었다는 결과가
보고되었다. 이 밖에도 sweep, skew, dihedral 상태
나용한 많은 연구\(^{(5\sim17)}\)에서도 이와 유사한
결론을 얻을 수 있었다.

구체적으로 3차원 Naviere-Stokes방정식을 이용하
여 1차 축융극축의 정적을 최적설계한 Lee와
Kim\(^{(9)}\)의 연구에서도 stacking line의 3차원적 형상
을 최적화 하였다. 설계방식으로는 억형의
stacking line이 플레이드의 화면방향으로 skew 되
도록 하는 요소를 선택하여 플레이드의 3차원적
형상을 최적화 하였다.

2. 유동해석

지배방정식으로는 3차원 박중근사 Naviere-
Stokes 방정식과 에너지 방정식이 사용되었으며,
 이를 경계조건저계(body-fitted grid) 상에서
체적이며 유한차분을 하였다.

Baldwin-Lomax 모델\(^{(11)}\)이 사용되었다. 이 모델은
3-방정식모델에 속하는 단순모델이지만, 토브릭바이
에 대한 적용에서 그 성능이 2방정식모델에 비해
 크게 뒤지지 않는다고 알려져 있다. \(^{(9)}\) 초기
상태의 수렴성 향상을 위해 Jameson 등\(^{(16)}\)에 의해
제안된 바 있는 외적자 4차 Runge-Kutta 시간 전
법을 사용하였고, 충격파에 의해 발생되는 해
의 전동을 제거하고 수치 계산상의 안정성을 확
보하기 위해 인공침설이 사용되었다. 렌바 경계
면에서는 유입되는 Mach수의 각 방향성분과 전
온도, 전압력이 지정되었다. 줄기 경계면에서는
히브러의 정압비가 주어졌고, 구부 정압을 계
산하기 위해서 변행방향 평형방정식이 사용되었
다. 동적인 킷 간극 영향을 고려하기 위하여 주
기적인 킷 간극 모델을 사용하였다.

입구 유동부분에는 H형 격자계를 사용하였고,
C형 격자계로 동기의 주위를 형성하였으며, 킷
간극 부분에는 O형 격자계를 사용하였다. 격자점
중심 유한차분법이 사용되었기 때문에 인근의 격
자block 사이의 갭에서는 한 격자점 중심 시켰
다. 반복되는 유동계산 때마다 스텝 방향 각 위
치에서 원주 방향으로 기본 물리량들이 정의되며,
계산된 평균 값은 기본 물리량들이 이론한 격자계
의 경계조건을 계산하기 위하여 적용된다.

3. 반응변 기법

반응변 기법은 목적함수를 메가리고 다양 방수
로 모델링 하기 위해 물리적 또는 수치적 설계를
통하여 도출된 결과들을 이용하는 일련의 수치
통계적 기법이라 할 수 있다.\(^{(10)}\) 원리는 설계로
부터 수많은 결과들의 급격한 변화를 만들기
위해 적용되었고, 한정된 수의 신호의 입력으로 일의
공간 내의 반응을 모델링함으로써 설계의 시험결
과를 줄이 수 있다는 특징이 바람직한 해석을 필요
로 하는 최적설계에 적용되면서 널리 이용하게
되었다.\(^{(21)}\)

반응변 함수는 일반적으로 다양식의 형태를 갖
고 있으며, 각 항의 미지 상수는 피트분석을 통
하여 구해진다. 2차 다양식으로 반응변 모델
을 형성할 경우, 다음과 같이 나타낼 수 있다.

\[n = \beta_0 + \sum_{\alpha=1}^{4} \beta_\alpha x_\alpha + \sum_{\alpha=1}^{4} \beta_\alpha x_\alpha^2 + \sum_{\alpha=1}^{4} \beta_\alpha x_\alpha x_\beta \]

여기서, \(n \)는 설계변수의 수를 의미하며, 상수(\(\beta_0 , \)
\(\beta_\alpha , \) 등)의 갯수는 \(n = n(n+1)/2 \)이다. 설계 모
델로부터 적절한 \(\beta \) 값을 도출하여야 하는데,
이는 최소자승법(least squares method)을 사용하여
구할 수 있으며, 전체 설계 영역의 모델의 상수
의 갯수보다 큰 값을 가져야 한다.

주어진 설계공간 상에서 반응변을 구성하는데
필요한 정보를 얻기 위해 경계선 설정점을 대상
으로 수치설계가 수행되어야 하는데, 설계설계
법 (design of experiment)을 이용하면 필요한 설계의
회수를 최소한으로 줄일 수 있다. 본 연구에서는 다양한 설계계획법 중 D-optimal 기법을 사용하였다. D-optimal 기법은 이론적인 반응모델의 항의 수보다 1.5~2.5배 되는 설계점의 수만으로도 신뢰할 만한 결과를 얻을 수 있다고 알려져 있으며, Giunta 등은 5개의 설계변수를 갖는 반응모델 구성을 이 기법을 적용하여 충분한 신뢰도를 갖는 반응모델 만들어냈다.

4. 목적함수 및 설계변수

블레이드의 형상을 최적화 하기 위한 목적함수에 단단한 압축기에 대해 주로 사용되는 단열효율 (adiabatic efficiency)을 사용하였다. 운전 상승이 크지 않은 경우, 일정한 압력에 대한 비율이 엔진과 출력부에서 거의 일정하므로, 목적함수는 다음과 같이 표현할 수 있다.

\[f = 1 - \eta \] \hspace{1cm} (2)

\[\eta = \frac{P_{out}}{P_{in}} \times \frac{T_{out}}{T_{in}} - 1 \] \hspace{1cm} (3)

\(P_\text{in} \)와 \(P_\text{out} \)는 각각 전입과 전출도를 의미하며, \(\eta \)는 블레이드의 엔진부와 출력부의 비율이다.

지금까지 압축기 블레이드 단면의 설계에 CDA (controlled diffusion airfoil)를 적용하여 손실을 줄 이려는 시도들은 비교적 성공적이었지만, 터보기계의 복잡한 유동을 해석하려 블레이드의 설계한 형상을 설계하는 방법은 그리 만족스럽게 개발되어 있지 못했다. 따라서, 본 연구에서는 목적함수에 대한 3차원 유동구조를 해석함으로써 블레이드 stacking line의 형상을 최적화 하였다.

설계변수로는 최적방향으로 stacking line의 형상을 변화시키는 3개의 변수를 사용하였고, 1에서 1은 각 설계변수를 설명하고 있다. \(\delta \)는 중간점 skew각을 나타내고, \(\delta_\text{tip} \)는 tip부분의 skew각을 나타내며, \(L \)은 블레이드으로부터 중간점 A까지의 높이 (\%span)를 나타낸다. Cai 등\(^{17}\)과 Beier 등\(^{16}\)이 블레이드의 성능형상을 위해 제안한 바와 같이 전방으로 skewed된 블레이드 형상을 갖는 수도 록 설계변수 범위를 다음과 같이 설정하였다. \(10 \leq L \leq 70 , -0.1 \leq \delta \leq 0.3 , -0.2 \leq \delta_\text{tip} \leq 0.4 \).

5. 결과 및 검토

블레이드를 물리화한 격자계는 Fig. 2와 같다. 엔진부에서는 45×35×63의 H형 격자가 사용되었으며, 블레이드 주위에는 181×46×63의 C형 격자가 팀 간극 부분에는 121×13×13의 O형 격자가 사용되었다. 현재의 적절히 수렴된 유동해석 결과를 얻기 위해서 3,000회의 반복계산을 수행하였고, Pentium-III 프로세서 1GHz를 사용할 경우 약 23시간의 CPU시간이 소요되었다.

본 연구에서는 낮은 중간비를 갖는 축류 압축기인 NASA rotor 37를 형상적화 하였다. 이 블레이드는 Reid 등\(^{13}\)에 의해 설계되고 실험

\[\text{Fig. 2 Blade surface grid} \]
Table 1 Results of ANOVA and regression analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R-squr</th>
<th>Adjusted R-squr</th>
<th>Std. error of the estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.975</td>
<td>0.960</td>
<td>0.920</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Table 2 Result of optimization at station 2

<table>
<thead>
<tr>
<th></th>
<th>Initial shape</th>
<th>Optimized shape</th>
<th>Increment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pressure</td>
<td>2.083</td>
<td>2.067</td>
<td>-1.72</td>
</tr>
<tr>
<td>Total temperature</td>
<td>1.264</td>
<td>1.253</td>
<td>-0.87</td>
</tr>
<tr>
<td>Mach No.</td>
<td>0.856</td>
<td>0.855</td>
<td>-0.46</td>
</tr>
<tr>
<td>Adiabatic</td>
<td>88.8</td>
<td>89.5</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Fig. 5 Optimized stacking line

다. 이 방법에 의해 27개의 추정된 수치 실험점들 중에서 15개의 수치 실험점이 선택되었다. Reid 등(25)의 실험결과와 비교하기 위해서, D-optimal 기법에 의해 선택된 형상이 서로 다른 15개의 블레이드들에 관한 해석은 공히 98% 초킹량에 대해서 이루어졌다.

각각의 미지상수는 통계학 상용 소프트웨어인 SPSS를 사용하여 구하였다. 완성된 만능함수는 t-검정과 adjust R2법(22)을 사용하여 신뢰도를 높였다.

ANNOVA와 회귀분석의 결과는 Table 1에 정리하였다.

최적화지점은 선형 계획법(linear programming)
온도를 이용한 전용속 육주압축기의 실차원 흐름 특성

![Fig. 6 Comparison of blade shapes](image1)

![Fig. 7 Total pressure profiles at 98% choked mass flow](image2)

![Fig. 8 Total temperature profiles at 98% choked mass flow](image3)

![Fig. 9 Adiabatic efficiency profiles at 98% choked mass flow](image4)

![Fig. 10 Efficiency vs mass flow](image5)
그림 11 90% 스팬 구간에서의 모차르트 도수。

그림 12 90% 스팬 구간에서의 전력 파도。

그림 13 정전자 압력 파도。

그림 14 정전자 스탈링 벡터。

6. 결론

반응먼 기법과 RANS(Reynolds-averaged Navier-Stokes Equations)을 이용하여 휘류형기를 정밀한 형태를 얻어낸 결과는 0.8% 이상으로 최적의 결과를 얻었다. 전압, 전류, 양상 반응력은 다소 감소하는 경향을 보였다. D-optimal 기법을 사용함으로써, 15개의 수치실험에 자동으로 성립할 수 있는 반응면을 구성하였다.
반응면 기법을 이용한 천추속 수축관축기의 설계원 형상 최적설계

참고문헌

(21) Myers, R. H., 1999, "Response Surface

