The Role of Protein Kinase C in the Cardiac Injury Induced by Skin Burn

Hye-Jung Moon*, Hynn Gug Cho¹ and Won-Hark Park
Department of Biology, Yeungnam University, Kyungbuk 712-749, Korea
¹Department of Visual Optics, Kyungwoon University, Gumi 730-852, Korea
(Received November 29, 2003; Accepted December 11, 2003)

ABSTRACT

The aim of the present study was to assess the role of protein kinase C (PKC) in the development of cardiac injury following skin burn. Sprague-Dawley rats were induced a skin burn a 15% total body surface area. Phorbol 12-myristate 13-acetate (PMA, 2 mg/kg) and bisindolylmaleimide (BIS, 0.05 mg/kg) were immediately administered i.p. after burn injury. 5 h and 24 h later, heart was removed and examined biochemical assay, ultrastructural changes and stereological analysis.

The activity of serum creatine phosphokinase was significantly increased at 5 h (p<0.01) and 24 h+BIS (p<0.001) after burn, compared with that of control. The activity of serum creatine phosphokinase was significantly decreased in PMA-treated groups after burn compared with postburn 5 h. PMA caused a decrease in MPO activity and induced wavy fibers in cardiac myocytes at postburn 5 and 24 h. BIS induced contraction band, separation of intercalated disk and abnormal mitochondria in cardiac myocytes at postburn 5 and 24 h. In stereological analysis, treatment of rats with PMA increased volume density of myofibril and mitochondria compared with postburn 5 and 24 h.

Our data suggest that the activation of PKC in skin burned heart decreases inflammation and protects the myocardium.

Key words: Burn injury, Inflammation, Protein kinase C

*Correspondence should be addressed to Hye-Jung Moon, Department of Biology, Yeungnam University, Kyungbuk 712-749, Korea. Ph.: 051-810-2371, FAX: 051-815-3061, E-mail: hjmcc@ymu.ac.kr
Copyright © 2003 Korean Society of Electron Microscopy
으므로 인체 유물의 생활을 포함한 근육의 내 질환 상태에 변화를 일으키는 심근 수축능 저하시키는 것으로 알려져 있다(Horton et al., 1995; Ieshiko et al., 2001; Xia et al., 2001). 그러므로 심장과 뇌의 생장성된 산소 부족으로 인해 세포의 구조가 손상되어 세포 내 질소 이용가능량이 감소되며 심근 수축력이 감소한다고 한다.

그리고 PKCinhbitor는 여러 세포에 apoptosis를 증가시키고 superoxide radicals를 생성시킬 뿐만 아니라 phospholipase D (PLD)를 활성화로 하여 PKC의 활성을 저하시켜(Clarb, 2001). PKC 저해로 인해 ischemia reperfusion과 심근 손상 발병에서 심근 손상은 감소시키는데 효과하다고 하였다(Laskey et al., 1997; Vogt et al., 1996). 특히 bisindolylmaleimide (BIS)는 모든 PKC isoform을 효과적으로 저하시켜(Cain et al., 1998) 심근내에서 apoptosis를 증가시킨다고 하였다. 이런 PKC는 leukotriene, prostaglandin, platelet activating factor 등 염증반응 유산물들로 증가 시켜 세포자단으로서 염증반응에도 관여한다고 하였다(Horton et al., 1998; Youn et al., 1992).

따라서 본 연구는 피부상장 유발 후 PKC activator와 inhibitor를 투여하여 화상에 의해 손상된 심근이 염증반응과 심근 기능에 있어서 이러한 변화를 일으키는지 알아보기 위해 생리화학적 분석, 염증조직학적 분석 그리고 심근의 미세구조 변화 관찰을 통해 고찰해 보고자 하였다.

제로 및 방법

1. 실험동물의 환상유발 및 처리

실험동물은 총 250g 내외의 성장기 전가한 Sprague-Dawley 종 수컷 친자들 8마리류에 extazine hydrochloride와 마취제인 다음, SpectraTr acknowledge TBSA (total body surface area) 15% 포도施工单位에서 한도에 맞춰 100°C에 10초간 화상을 가하였다. Phorbol 12-myristate 13-acetate (2 mg/kg, Sigma)와 bisindolylmaleimide (0.05 mg/kg, Sigma)의 투여는 화상 유발 10분 후에 시행하였으며 각각 5시간, 24시간 전후에 처리하고 실험을 사용하였다.

동물의 처사는 조사 활성의 임상 변동을 고려하여 일정시간에 시행하였고, ether 마취제에서 복지 측정을 소지 하지 않고 성장성한 celui를 외부 전기적 부하를 회복하여 실험가 시간 후 실험을 적합시켰다. 적절한 실험은 생물시험기로 측정한 후, 혈액을 계기하는 다음 복리 끝사자의 측정하였다. 채취한 혈액은 30분간 발열시킨 다음 3,000 rpm에서 15분간 냉방분리하고 혈청을 얻어서 생물학적 측정이 사용하였다.

실험동물군은 대조군, 화상 후 5시간군, 화상 후 5시간 + PMA 투여군, 화상 후 5시간 + BIS 투여군, 화상 후 5시간 + PMA + BIS 투여군 등으로 나뉘어 실험을 수행하였으며 실험후 5시간 후에 각각 실험군의 실험동물들을 평가 하였다.
우 24시간군, 화장 24시간+PMA 투여군, 화장 24시간+7x10^6 투여군으로 구분하였다.

2. 실험 내 효소 활성도 측정
 1) Aspartate aminotransferase (AST) 활성도 측정
 화장 내 AST의 활성도 측정은 kit 시력(아산제약(주))을 사용하였으며, 단위는單位ml당Karmen unit로 표시하였다.

2) Creatinine 활성도 측정
 화장 내 creatinine의 활성도 측정은 kit 시력(아산제약(주))을 사용하였으며, 단위는 mg/dl로 표시하였다.

3. 심근 조직 내 myeloperoxidase (MPO) activity 측정
MPO의 활성도 측정은 1g의 심장조직에 20 mM potassium phosphate (pH 7.4) 용액 4.0 ml을 가하여 4℃에서 균등하게 삶은 (Polytron homogenizer, Swissad) 4℃, 18,000 rpm(20,000, USA)에서 30분간 원심분리하였다. 그 후 장내물을 0.5% hexadecyltrimethylammonium bromide (HTAB)가 함유된 50 mM potassium phosphate (pH 6.0) 용액 4.0 ml에 부유한 다음 생경에 90초간 소고기 말에 분리하였고, 1,000 rpm으로 5분간 원심분리한 후 분연한 콧물 1,000 ml을 상온에서 12,000 rpm으로 2분간 원심분리한 후 상층액 0.1 ml을 분리하여 o-dianisidine이 함유된 500 mM 탄산수소 용액 3.0 ml과 반응시켜 관 450 nm에서 시간의 변화에 따른 흡광도의 변화를 측정하고(UV 1601, Shimadzu) MPO의 활성도(Ug of wet heart)를 계산하였다.

4. 심근 조직 내 KC (neutrophil chemoattractant) level 측정
 피부피질 후 심근내 조직구 첨추 양로돌린 KC의 양을 측정하기 위하여 mouse KC immunoassay kit(R & D, MN, USA)를 사용하였다. 실험을 통해하여 4.0 ml의 50 mM potassium phosphate (pH 7.4) 하에서 조젂을 분해한 후, 3,000 rpm으로 10분간 원심분리한 다음 상층액을 정제하여 분석과정에 따라 반응시킴고 microtiter plate reader(BioRad 550, CA, USA)를 이용해 450 nm에서 흡광도를 측정한 다음 KC의 흡광도를 계산하였다.

5. 심근 조직 내 protein kinase C (PKC) assay를 위한 시료 조제
 심장 결절 후 그 두개를 측정하고 25 mM Tri-HCl (pH 7.4), 0.5 mM EDTA, 0.5 mM EGTA, 0.05% Triton X-100, 10 mM β-mercaptoethanol, 1 μg/ml leupeptin, 1 μg/ml aprotinin,가 조성된 extraction buffer 5 ml에 얻어 둔 형질자주 물질을 가하여, 3,000 rpm 병리학시계 상층액을 채취한 다음 extraction buffer로 미리 갈린 체계로 DEAE cellulose column에 통과시켜 200 mM NaCl이 포함된 extraction buffer로 PKC-containing fraction을 분리하였다.

6. 심근 조직 내 protein kinase C (PKC) activity 측정
 PKC 측정은 SignalTEC protein kinase C assay kit (Promega, USA)를 이용하였다. [γ-32P]ATP를 포함한 PKC activation buffer에 PKC-containing fraction 5 μl을 첨가하여 30℃에서 5분간 incubation시킨 후 termination buffer를 가하여 반응을 중지시켰고, 그 중 반응액 10 μl을 SAM membrane에 격리하여, 수용한 다음 membrane를 알루미늄 호일로 불린 후 심근에서 30~60분 동안 건조시키고 1 ml의 scintillation cocktail에 담아 scintillation counter(Perkin Elmer, USA)로 이용하여 PKC 활성을 측정하였다.

7. 심근 미세구조의 관찰
 제작한 실험에 사용된 부분을 저지하하여 2.5% glutaraldehyde (0.1 M phosphate buffer, pH 7.4, 4℃)에 2~4시간 간 조경시키고, 0.1 M phosphate buffer (pH 7.4)으로 중분액 세척한 후 다시 1% osmium tetroxide에 90분간 후고경시켰다. 고정이 완료된 조직은 0.1 M
phosphate buffer(0.1M)로 처리한 다음 알코올의 농도를 순차적으로 증가시키며 탑수시키고, propylene oxide로 칩하여 epoxy resin에 칩두 및 포세먼 다용 37°C에서 12시간, 60°C에서 48시간동안 열중합시키며 붐을 저작하였다. 만들어진 붐은 Rikert Supernova(Sweden)를 이용하여 1μm 두께로 박막한 다음 1% toluidine blue로 염색하여 광학적 미경에서 관찰부위를 선정한 다음, 60-70nm로 부착하여 uranyl acetate와 lead citrate로 이중염색한 후 투과전자미경(H-600, Hitachi)으로 관찰하였다.

8. 실험의 일체관리학적 관찰

1) 알 평가를 위한 표본의 선택

근관성묘, 사상배, 근관실상한의 양적 조사를 위해 미리 두구로 관찰표본을 이용하여 실험조건의 종합으로 반복된 표본을 두구로 선택하여 5,000배로 확장
하고, 인목 과정에서 3배로 확대하여 15,000배의 사진을 얻었다.

2) 세척 밀도(volume density)

근관성유와 미로결구미의 세척 밀도의 측정은 10

\[V_o = \frac{V_s}{V_T} \]

(\(V_o \) = 세척 밀도, \(V_s \) = 대상물의 측정, \(V_T \) = 전체 측정의 수, \(V_s \) = 전체 점의 수)로 측정하였다.

3) 수 밀도(numerical density)

사상배의 수 밀도 계산은 10\(\times d(10\times 10\text{mm}) \)의 단일 격자 test grid를 사용하여 계수한 후 다음 식에 적용하였다.

\[N_o = \frac{1}{1.58} \times \frac{N_s^{1/2}}{V_T^{1/2}} \]

(\(N_o \) = 수 밀도, \(N_s \) = 단위 면적당 대상물의 수, \(V_o \) = 단위 횟수)

9. 통계처리

제계수원된 모든 표본은 SPSS WIN 통계 프로그램을 이용하여 유의수준을 0.05으로 하여 ANOVA test를 실시하였다.

결 과

1. 결상 내 효소 활성 변화

피복체세의 약한 혈청 AST와 creatinine 활성변화를 판정한 결과(Table 1), 혈청 AST 활성은 혈상 후 5시간 군과 24시간군에 의미있게 비교하여 각각 4.5배(\(p < 0.01 \)), 4.0배(\(p < 0.05 \)) 증가되였고, PMA 두구군에서는, 5시간군이 혈상군보다 낮게 나타났고, 24시간군에서는 혈상군보다 높게 나타났다. EIS 두구군은 대조군과 비교하여 5시간군에서는 가장 높은 활성을 나타내었고, 24시간군에서는 가장 낮게 나타났다.

혈청 creatinine 활성은 혈상 후 5시간군에서 대조군과 비교하여 1.17배(\(p < 0.01 \)) 증가되었고, 24시간군에서 약간 높게 나타났다. 혈상 후 5시간+PMA 두구

<table>
<thead>
<tr>
<th>Groups</th>
<th>AST (Karmen unit/ml)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (10)</td>
<td>31.50 ± 3.16</td>
<td>0.407 ± 0.0124</td>
</tr>
<tr>
<td>Burn 5 h (10)</td>
<td>163.40 ± 44.30**</td>
<td>0.474 ± 0.0402***</td>
</tr>
<tr>
<td>Burn 5 h+PMA (10)</td>
<td>115.60 ± 26.192</td>
<td>0.400 ± 0.0105**</td>
</tr>
<tr>
<td>Burn 5 h+BIS (10)</td>
<td>156.33 ± 28.12****</td>
<td>0.437 ± 0.0233</td>
</tr>
<tr>
<td>Burn 24 h (10)</td>
<td>127.67 ± 25.32***</td>
<td>0.419 ± 0.0249**</td>
</tr>
<tr>
<td>Burn 24 h+PMA (10)</td>
<td>123.50 ± 18.66**</td>
<td>0.400 ± 0.0082***</td>
</tr>
<tr>
<td>Burn 24 h+BIS (10)</td>
<td>111.60 ± 33.374</td>
<td>0.429 ± 0.0175**</td>
</tr>
</tbody>
</table>

Each value represents the mean ± S.E.
*\(p < 0.05 \), **\(p < 0.01 \), ***\(p < 0.001 \)
\# Significantly different from the control
\$ Significantly different from the burn 5h
The numbers of determinations are in the parentheses.
군에서는 확상 후 5시간군보다 높게 나타났고, 확상 후 24시간군에 PMA 투여군에서도 확상 후 24시간군보다 높게 나타났다. 확상 후 5시간 + BIS 투여군은 확상 후 5시간 + PMA 투여군보다 높게 나타났으며, 확상 후 24시간 + BIS 투여군은 확상 후 24시간군과 확상 후 24시간군 + PMA 투여군보다 높게 나타났다.

2. 피부화상 유도 후 실험 세 KC, MPO 및 PKC 활성도 측정

피부화상 후 실험 세의 호산구 활성 유도물질의 활성

Table 2: Changes of neutrophil chemotactic factor (KC), myeloperoxidase (MPO) and protein kinase C (PKC) activities in heart following scald burn injury

<table>
<thead>
<tr>
<th>Groupe</th>
<th>KC (pg/ml)</th>
<th>MPO (Ug/1mg)</th>
<th>PKC (mmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (10)</td>
<td>165.4 ± 0.09</td>
<td>0.024 ± 0.0064</td>
<td>0.25 ± 0.008</td>
</tr>
<tr>
<td>Burn 5h (10)</td>
<td>175.9 ± 13.00</td>
<td>0.0063 ± 0.0050</td>
<td>0.44 ± 0.020</td>
</tr>
<tr>
<td>Burn 5h + PMA (10)</td>
<td>159.7 ± 0.0197</td>
<td>0.011 ± 0.0016</td>
<td>0.32 ± 0.016</td>
</tr>
<tr>
<td>Burn 5h + BIS (10)</td>
<td>161.5 ± 0.43</td>
<td>0.022 ± 0.0202</td>
<td>0.39 ± 0.0178</td>
</tr>
<tr>
<td>Burn 24h (10)</td>
<td>125.5 ± 0.95</td>
<td>0.017 ± 0.0125</td>
<td>0.25 ± 0.039</td>
</tr>
<tr>
<td>Burn 24h + PMA (10)</td>
<td>159.5 ± 0.69</td>
<td>0.013 ± 0.0028</td>
<td>0.24 ± 0.012</td>
</tr>
<tr>
<td>Burn 24h + BIS (10)</td>
<td>150.8 ± 0.55 **</td>
<td>0.013 ± 0.0031</td>
<td>0.32 ± 0.013</td>
</tr>
</tbody>
</table>

Each value represents the mean ± S.E.

** p < 0.01

*p < 0.05

The numbers of determinations are in the parentheses.

PMA 투여군과 BIS 투여군이 확상 후 24시간군보다 높게 활성을 나타내었다. 실험 세의 PKC 활성은 시간에 따른 수용자로 감소되는 추세였고, 확상 후 5시간군은 확상군보다 높게 나타났고, 확상 후 24시간군 + PMA 투여군은 확상 후 5시간군보다 높게, 확상 후 5시간군 + BIS 투여군은 확상 후 5시간군보다 높게 나타났다. 확상 후 24시간군에서는 대조군과 유사한 활성을 나타내었으며, 확상 후 24시간군 + PMA 투여군은 확상 후 24시간군보다 높게, 확상 후 24시간군 + BIS 투여군, 확상 후 24시간군 + PMA 투여군보다 높게 나타났다.

3. 미세구조의 관찰

피부화상으로 유도된 실험 세의 미세구조 관찰 결과, 대조군(Fig. 1)과 비교하여 확상군에서 심한 형태학적 변화가 관찰되었다. 확상 후 5시간군에서는 페이 분리

Open the next page of the document.
균에서는 통계적으로 통합된 핵이 관찰되었고 사막
이가 소실된 부분에서 공포를 봤 수 있었다. 또한 사
마린성 분리전도도 관찰되었다(Fig. 10).

4. 염색체적학적 관찰

피부조직에 의한 심근조직 내에 포함된 근심화증, 사막
이의 양을 변화를 분석한 결과(Table 3), 근심화증
의 체적밀도는 화상 후 5시간군과 24시간군의 비슷한
대조군에 비하여 감소되었고 특히 24시간군에서는 12% 유
의하게 감소되어 나타났다. 화상 후 6시간+PMA 투
여군과 BIS 투여군 모두 대조군과 화상 후 5시간군에
비하여 증가되었다. 화상 후 2시간+PMA 투여군과
BIS 투여군에서도 대조군과 화상 후 24시간군보다 증
가되었고, 화상 후 2시간+PMA 투여군은 화상 후 5
시간+PMA 투여군보다 증가되어 나타났으며, 화상
후 2시간+BIS 투여군에서는 화상 후 5시간+PMA 투
여군보다 감소하였다.

사막의 체적밀도는 화상 후 5시간군과 24시간군
이 대조군에 비하여 각각 13% (p<0.001), 13% (p<
0.001) 유의하게 감소되어 나타났다. 화상 후 5시간
+PMA 투여군과 BIS 투여군은 대조군보다 감소하였으므로, 화상 후 24시간군보다 증가되었다. 화상 후 24
시간+PMA 투여군은 대조군보다는 감소하였고 확상
후 24시간군보다 약간 증가되었다. 화상 후 24시간
+BIS 투여군에서는 모든 실험군 중 가장 높게 나타

사막의 수 밀도는 1 μm³에 포함되는 사막의
수를 나타내는 것으로, 화상 후 5시간군과 24시간군
이 대조군에 비하여 각각 13% (p<0.001), 12% (p<
0.01) 감소하였다. 화상 후 5시간+PMA 투여군과 BIS
투여군에서는 대조군보다는 낮게 나타났으나 확상 후
5시간군보다는 증가되었고 화상 후 5시간군+PMA
투여군은 화상 후 5시간군보다 19% 유의한 증가를 나
타내었다. 화상 후 24시간+PMA 투여군은, 대조군보
다는 낮았지만 확상 후 24시간군보다는 높게 나타났으므로, 확상 후 24시간+PIS 투여군에서는 대조군보다
24% (p<0.001) 유의하게 증가되어 나타났다.

고찰

Protein kinase C (PKC)는 세포막을 통해 다양한 효
태의 신호를 세포내로 전달하여 단백질을 신호처리
PLA₂가 활성화되면 염증반응을 유도하기도 하고,
lipocortin 혈소판을 유도하여 세포막 안정화로부터 arach-
idonidc acid를 생성하게 하는 phospholipase A₂
(PLA₂)로 역제하여 염증반응을 유발물질의 혈소판을 역
제함으로써 직접 투여한 투여군, 부피, fibrin 작용, 형질
구의 염증반응이 있을 경우 염증반응을 역제한
기도 한다 (Chang et al., 1987). 이러한 PKC의 양체에
인한 역할들은 바탕으로 PKC가 활성에 의해 손상된 심
근에서 염증반응을 증가시키는지 혹은 역제시키는지
을 알아보고자 PKC activator인 phorbol 12-myristate
13-acetate (PMA)의 PKC inhibitor인 bisindolylmalei-
mid (BIS)를 각각 무작위 투여한 후 투여군과 심근의
손상에 미치는 역할을 알아보고자 하였다.

반면 화상으로 유도된 심근의 손상 정도를 알아보기
위해 투여 AST의 활성을 측정한 결과, 화상 후 5시간
군에서 대조군과 비교하여 높게 나타났으며 활성은 24
시간군에서는 낮은 활성을 보였으며 (Yang et al., 1997),
화상 후 5시간+BIS군이 가장 높은 활성을 나타내고 심근손상이 가장 심하게 나타났음을 알 수 있었다.
한 심장 순상 시 혼혈에서 가장 먼저 활성화가 증가하는 creatinine은 백혈에 의하여 활성화가 증가하였지만, PMA 투여군에서는 낮은 활성화를 나타내며 PMA가 화상에 의한 심근의 손상 정도를 완화시킬 수 있었음수 있다. Horton et al. [1989]은 PKC가 결합이 투여시킨 후 혈중 생성에 의한 염증반응을 감소시키고 심근을 보호하는 중요한 역할을 한다고 하였으며, 화상의 복수에 의한 심근을 보호하는 기능으로 PKC가 결합의 중요한 역할을 할 수 있다고 하였다.

화상 후 심근 내 PKC의 활성화는 증가하는 경향이었는데, 화상 후 5일간에서 높은 활성화가 24시간에서 감소하였고, PMA 투여군이 가장 높은 활성을 나타내었으며, BIS 투여군에서 높게 나타났다. 이러한 결과는 PKC 활성증가는 염증반응일반적인 KC의 생성이 증가하는 것으로, Cho et al. [2001]이 PKC 활성화는 염증성 심근손상을 완화시킬 수 없다고 함 결과를 보면 결론 PKC의 활성증가는 심근조직 내 염증반응을 감소시키는 것으로 추정되었다.

사례체의 재활치료도 증가현상은 사례체의 증상현상으로 생각되며, 확상 후 24시간+8일 후귀관에서는 사례체 기계적 촉진성 직관으로 인해 사례체의 경상적인 환경적 제공을 위한 보상현상으로 사례체가 분화되어 사례체의 수명도가 증가된 것으로 판단되었다.

이와 같은 결과들은 종합적 통찰 때, PKC의 활성화는 확상으로 인해 손상된 신경세포 염증반응을 감소시키며 심근의 손상을 완화시키는 것으로 나타났다.

참고 문헌

Koide H, Ogita K, Kikukawa U, Nishizuka Y: Isolation and characterization of the subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 89: 1149 1153,

<국문초록>

본 연구는 피복화상으로 유도된 심근손상에서 protein kinase C (PKC)의 역할을 알아보고자 하였다. 수컷 쥐의 (E3)체의 15%의 피복화상으로 유도한 후, PKC 활성 지표인 phorbol 12-myristate 13-acetate (PMA)나 PKC 억제제인 bimelomide (BIS)를 뿌려주는 2시간, 24시간 후에 심장을 적출하여 생화학적 - 미세구조적 - 임베딩학적 방법을 실시하였다. 혈청 AST와 creatinine 은 심장 조작 후 5시간군과 심장 운 5시간군+BIS 투여군에서 높게 나타났고, K+와 K+의 혈청은 PMA 투여군과 BIS 투여군보다 낮게 나타났다. 미세구조적 관찰 결과 PMA 투여군에서는, 피복으로 인한 심부 혈관, 좌우측 혈관, 심방판의 투명성 현상에서 미세혈관의 형태가 원형화되었고, BIS 투여군에서는 피복에 따른 혈관 반응성이 낮아져 피복을 반복한 경우에 대한 심장 전반적으로 미세혈관의 특성을 보완할 수 있었다.
이 상각형 약정을 나타내었다. 입체비해석적 결과에서는 확성으로 인한 근직소유의 지적밀도 감소가 PMA와 EIS 뿐으로 신체 증가하였고, 사림적 지적밀도의 수반도 중Lastly는 BIS군에서 가장 높게 나타났다. 절기적으로 PKC의 활성화는 확성으로 인해 순상된 심근에서도 염증반응을 감소시키며 심근 손상을 보호한다고 사료된다.

FIGURE LEGENDS

Fig. 1. Electron micrograph of normal cardiac muscle in rat. The myocyte was shown well-preserved feature. Myofibrils appeared intact and formed a regular array. Scale bar indicates 2 μm.

Fig. 2. Electron micrograph of cardiac muscle at 5 h following skin burn in rat. Hypercontraction band (asterisk) and muscle flaking (double asterisk) were shown. M: mitochondrion, My: myofibril. Scale bar indicates 2 μm.

Fig. 3. Electron micrograph of cardiac muscle at 5 h following skin burn in rat. The intercalated disk (arrow) was separated. Scale bar indicates 2 μm.

Fig. 4. Electron micrograph of cardiac muscle at 5 h following skin burn with treatment of PMA in rat. Wavy fiber (arrow) was shown. Scale bar indicates 2 μm.

Fig. 5. Electron micrograph of cardiac muscle at 5 h following skin burn with treatment of PMA in rat. The intercalated disk (arrow) was partially separated. Scale bar indicates 2 μm.

Fig. 6. Electron micrograph of cardiac muscle at 5 h following skin burn with treatment of EIS in rat. Hypercontraction band (asterisk) was observed. Scale bar indicates 2 μm.

Fig. 7. Electron micrograph of cardiac muscle at 5 h following skin burn with treatment of EIS in rat. Separation of intercalated disk (arrow) was noted. Scale bar indicates 2 μm.

Fig. 8. Electron micrograph of cardiac muscle at 24 h following skin burn in rat. Vascularization of mitochondria (arrow) was shown. M: mitochondrion. Scale bar indicates 2 μm.

Fig. 9. Electron micrograph of cardiac muscle at 24 h following skin burn with treatment of PMA in rat. Interconnected disk (arrow) appears intact. Lipid droplets (LD) were shown. Scale bar indicates 2 μm.

Fig. 10. Electron micrograph of cardiac muscle at 24 h following skin burn with treatment of EIS in rat. Nucleus (N) was swollen in a few lobes and vacuolization of mitochondria (arrow) was observed. Scale bar indicates 2 μm.