전투장갑차의 수상운행을 위한 신개념 부양장치 연구

崔　允　相
國科院　선임연구원
공학박사

전투장갑차의 수상운행을 위한 기존의 몇 가지 부양장치 방식은 방호력을 부여할 수 없고 수상운행 준비시간이 많이 소요되거나 방호력이 갖추기 위한 장비가 필요하다는 점에 중점을 두었다.

장갑차의 수상운행을 위한 기존의 몇 가지 부양장치 방식은 방호력을 부여할 수 없고 수상운행 준비시간이 많이 소요되거나 방호력이 갖추기 위한 장비가 필요하다는 점에 중점을 두었다.

새로운 장갑차의 수상운행을 위한 기존의 몇 가지 부양장치 방식은 방호력을 부여할 수 없고 수상운행 준비시간이 많이 소요되거나 방호력이 갖추기 위한 장비가 필요하다는 점에 중점을 두었다.
K-1 전차의 수중 운행 훈련 모습

나면서도 중량 증가는 최소화가 가능한 것으로 판단된다.

따라서 지금까지 없던 부양장치의 방호기준을 정하고 세부설계를 확정하여 체택함으로써 전투장갑차의 수상운행성을 극대화하는 것이 시급하다.

전투장갑차의 수상 기동력은 하천 장애물이 있는 경우 이를 도하하고 후속 부대의 도하를 방해할 수 있는 대양의 교두보를 확보할 수 있도록 하기 위하여 매우 중요하다.

특히 한반도는 동서 방향으로 하천이 많은 지형학적 특성이 있으므로 남북 기동 전로상의 장애물인 하천 극복능력이 요구되는 작전 풍경에서 수상기동력의 확보는 필수적이라고 할 수 있다.

인원수송을 주임무로 하는 장갑차(APC)의 경우 차량 총 중량에 비해 차체 부피가 커서 자체 무력으로 충분히 수상 부양이 가능하므로 대부분 수상운행능력을 보유하고 있다.

그러나 전투장갑차가 보전 협동작전 수행을 주 임무로 하면서 전투력 중심의 체계로 변경해 갑에 따라 중구경의 화력성능 및 생존성능 증대를 위한 방호력 증대가 요구되므로 이에 따라 전투중량은 전차로 증대되는 추세이며 자체 무력으로는 수상 부양이 불가능하게 되었다.

따라서 수상운행능력을 확보하기 위해서는 부양장치가 반드시 필요하고 현재까지 알려져 있는 부양장치는 그 성능이 제한적이어서 쉽게 설계안을 결정하기 곤란하다.

기존 부양장치의 종류는 부양스크린(Water Barrier) 방식, 공기주머니(Inflatable Airbag) 방식 그리고 폴트(Pontoon) 방식 등이 있는데 독자적 수상운행성, 방호력, 수상안전성, 운용성 그리고 준비시간 등에서 각각 장단점이 있다.

따라서 전투장갑차에 수상 기동력을 부여하기 위해서는 도하작전의 개념 설정과 부양장치 형태에 따라 체계설계를 위한 대안분석이 필요하므로 체계 성능요소 중 어느 하나 이상을 포기해야 하는 결정을 강요받는 셈이다.

이러한 이유로 세계 각 국의 20톤 이상의 주력장갑차는 대부분 수상운행이 안 되며, 미국의 M2/3 Bradley가 유일하게 수상운행을 하고 있으나 기존의 부양스크린 방식은 방호력이 없고 설치시간이 30분 이상 소요되며 스크린 붕괴로 침몰하는 사고가 다수 발생한 것으로 알려졌다.

M2 장갑차의 부양스크린 방식 부양장치
그러서 이를 개선하기 위하여 각기준의 붕괴소방 방식 및 부양장치를 최근 개발하였으나 방호체제 이 불충분하여 결국 군 장비로 제택되지 못한 것으로 알려지고 있다.

현재 전투장갑차를 개발하고자 하는 우리 나라로서도 수상기동성을 위한 최적의 부양장치 개발이 절실히 요청되는 시점이라고 판단된다.

이 글에서는 이와 같은 수상운행과 관련된 기술적 한계를 극복하기 위하여 기존 방법에서 벗어날 이상적인 부양장지 체계가 되기 위한 체계구조사항을 원점에서부터 검토하고 분석하여 체계적 수요를 구성하고 체계구조를 최적화함으로써 최적의 성능을 위한 새로운 설계안을 도출하여 제시하고자 한다.

신 개념 접이식 방호부양장치 체계 설계안

체계요구분석

기존의 부양장치는 만족스럽지 못하므로 새로운 방식의 부양장치 개발이 요구되는데, 이를 위해서 체계구조사항을 분석하고 이를 구현하기 위한 설계방안을 원점에서부터 검토하였다.

이상적인 부양장치 시스템이 되기 위한 체계구조 사항은 다음과 같다.

첫째, 적절한 부력을 제공해야 한다. 전투장갑차는 고도의 방호력과 화력 등 고성능을 지향하기 때문에 차량 중량은 증가하는 반면 차체 크기는 수송성 등의 이유로 제한된다.

전투장갑차가 차체 부력으로 수상부양 할 수 있는 한계 중량을 약 18~19톤 수준으로 보면, 25톤급 전투장갑차는 약 7톤 이상의 보조 부력이 필요하다.

둘째, 방호력을 제공해야 한다. 장갑차는 발 뒤로 장갑으로 보호되는 차로서 방호성능이 특정인데, 수상운행시 부양장치에 방호성이 없다면 피탄시 침몰 위험이 있으므로 육상운행시보다 더 취약한 결과가 된다.

셋째, 독자적 수상운행을 위하여 탑재운용이 가능해야 한다. 또한 신속히 수상운행 모드로 전환가능해야 하며, 이를 위해서는 모드 전환 과정을 기계화 및 자동화하는 것이 바람직하다.

이는 치명적 전투 환경에서 승무원의 안전을 보장하기 위해 중요한 사항이며, 특히 화생방 장착 임무를 수행할 때는 필수적으로 갖추어야 할 사항이다. 수상운행이 끝나면 신속히 육상운행 모드로 전환가능해야 한다.

넷째, 중량 증가를 최소화해야 한다. 방호체제는 종류에 따라 차이가 있지만 어떤 경우에도 상당한 중량을 가지므로 최소 중량으로 최대방호효과를 갖도록 최적화하여야 한다.

다섯째, 수상 안정성을 극대화한다. 장갑차는 수상운행체제로서의 단순한 안정성 이상의 수상안정성을 갖추는 것이 바람직하므로, 이는 동적 수상 전투력 발휘가 가능한 수준 즉, 수상에서 전방위로 주요 시가격이 가능할 정도의 안정성을 갖출 수 있다면 이상적이라고 할 수 있다.

이 부분은 별도의 연구가 필요하였지만 부양장치의 설계에 안정성을 극대화하는 신 배려를 하여 이와 관련된 새로운 및 가로방향의 메타센터 높이를 극대화하는 것이 필요하다.
이와 같은 체계 요구성을 모두 갖출 수 있다면 이상적인 부양장치 체계가 될 수 있다고 판단된다.

● 설계 개념 접근

이러한 체계 요구성을 구현하기 위한 각각의 방안을 생각하고 이를 종합 반영할 수 있는 설계 개념을 도출할 수 있도록 기술적으로 접근해 보자.

첫째, 부가부목을 제공하기 위해서는 밀폐공간을 형성해야 하는데, 공기주머니 형태가 제작성과 신뢰성에서 가장 유리하다.

둘째, 방호소재는 현 소재기술을 감안할 때 판재형태가 될 수밖에 없다.

판재로 부양공간을 형성하려면 입체가 되어야 하는데, 부양장치를 차체 측면에 부착되는 육면체로 구성하면 피탄 가능성이 없는 내측면과 하면을 제외한 상면, 외측면, 전면 및 후면은 방호판재로 구성해야 한다.

셋째, 입방체의 부양장치가 탑재 운용이 가능하려면 육상운행시에는 접히서 차체 측면에 부착되어야 한다. 따라서 접이성을 가져야 하는데, 6면을 가진 입체를 밀폐성을 유지한 채 접고 평 수 있는 방법이 도출되어야 한다.

또한 전개하고 접는 과정을 기계화하고 자동화하려면 부양장치를 구동하는 구동장치가 필요하다.

넷째, 방호판재는 소재에 따라 차이가 있으나 상당한 중량을 가지므로 부양장치의 구성위치별로 필요한 방호수준과 접한 상태에서의 복합방호성능이 차체 측면 방호기준에 맞도록 최적화하는 것이 필요하다.

다섯째, 장갑차의 수상안정성과 관련된 사항은 건현과 메타센터 높이다.

건현은 부력의 크기와 관계되므로 부양장치의 크기를 적절히 설계함으로써 최적화할 수 있다.

메타센터 높이는 수상에서 기울었을 때 제자리로 돌아오라는 복원력의 크기를 나타낸다. 즉 메타센터 높이가 높음수록 복원력이 강하며 안정성이 높다고 볼 수 있다.

메타센터 높이는 수상운행체가 수면을 가르는 단면에 대한 단면이차 모멘트를 그 수상운행체의 배수량으로 나눈 값으로서 정방형 단면을 가진 장갑차는

프랑스의 AMX-10P PAC 90 장갑차의 수상 운행 모습
단순 안정성 측면에서는 충분한 메타센터 높이를 가진다.
그러나 수상에서 사격을 하게 되는 상황을 가정하면 메타센터 높이는 클수록 유리해지는데, 특히 세로방향에 비해 상대적으로 작은 가로방향 값을 크게 하는 것이 전방위 사격을 가능하게 하는데 필요하다.
메타센터 높이를 크게 하려면 부양장치의 상면이 수면 위에 노출되도록 하여야 한다.

- 설계
이와 같은 설계설계 개념을 반영하여 다음과 같은 구조와 기능을 가진 부양장치체계를 구성하였다.
부양장치에 밀폐성, 방호성 및 점이성이라는 상반되는 특성을 모두 부여하기 위해서는 방호성을 가진 관계를 접을 수 있는 구조로 연결하고, 밀폐성을 가진 공기주머니를 관계의 요소 요소에 접합하여 일부 화하는 이중구조로 함으로써 가능하다.
위의 그림과 아래의 그림에서 보듯이 부양장치는 차체 측면에 부착되는 내측면판을 기저로 하고 현지로 연결된 상면방호관과 여기에 현지로 연결된 외측면방호관 그리고 이 3개의 판과 요소 요소가 부착되고 전개된 내부 공간을 채우는 공기주머니 및
정비를 위해 부양장치를 들어올린 모습

이 고정장치를 풀고 부양장치가 접해 고정된 상태 에서 주 구동장치인 유압설린다를 신장시키면 부양 장치 전체를 아래의 왼쪽 그림과 같이 들어 올릴 수 있는데, 이 기능은 신축형 연결구가 신장함으로써 별다른 분해작업 없이 간편하게 수행된다. 이는 아 전에서 차체 하부를 정비할 때 매우 유용하다.

P.64 위의 그림은 부양장치가 전개되고 몫막이판 이 세워져서 수상운행 모드로 된 전투장갑차의 모습 이고, 아래의 오른쪽 그림은 부양장치와 몫막이판이 접혀져서 육상운행 모드로 전환된 전투장갑차의 모 습이다.

P.64 아래의 그림은 부양장치의 전개과정을 보여 주는 단면 모습이다. 부양장치를 전개할 때는
무기체계 논단

수상운행 상태의 전투장갑차

① 전후면판 고정장치 및 상면판과 내측면 판 하단의 잠금장치를 풀어 주고,
② 전후면판을 전개하고,
③ 유압실린더를 상면판이 수평이 될 때까지 진상하고
④ 원치를 통해 로프를 풀면서 여기에 연결된 외측면판이 전개됨과 동시에 공기를 공급하여 부양장치를 평창시킨 후,
⑤ 전후면판을 외측면판에 고정시킴으로써 전개가 완료된다.

부양장치 단면도와 전개순서

1. 내측면판
2. 상면방호판
3. 외측면방호판
4. 공기주머니
5. 신축형 연결구
6. 현지
7. 잠금장치
8. 유압작동기
9. 원치
10. 로프
부양장치를 접을 때는 역순으로 작동시킨다. 이 과정은 완전 자동화가 가능하다.

위의 그림은 부양장치가 접혀져서 각 방호판이 접쳐진 상태를 나타내고 있다. 방호판은 1겹에서부터 3겹까지 접쳐지는데, 이를 분석하고 최적화하여 중량을 최소화하도록 하여야 한다.

일반적으로 차량측면의 방호기준은 매우 높기 때문에 3겹 부분을 감안한다라도 소화기란 방호는 중량 증가 부담 없이 가능하다.

그리고 약간의 중량 증가 부담을 허용한다면 차량측면과 상면 등 위치별 방호기준 차이를 이용하여 최적설계를 함으로써 이보다 원동히 높은 방호력을 부여하는 것이 가능하다.

또한 본 부양장치 설계안은 수상운행 준비과정, 수상진입과정, 수상운행 및 대인상호 후 점이과정까지 반경없이 완전한 방호성능구현이 가능하다는 점이 강점이다.

지금까지 검토한 바와 같이 본 접이식 방호 부양장치 설계안은 체계 요구사항을 모두 만족시킬 수 있을 것으로 판단된다.

그러나 현재는 부양장치의 위치별 방호기준이 설정되지 않아 세부설계를 할 수 없으므로 부양장치의 방호설계기준을 정하는 것이 시급하다.

몇 논 말

접이식 방호부양장치체계 설계안은 전투장갑차의 부양장치로서 요구되는 부력, 방호성, 독자작 수상운행을 위한 탑재운용성, 수상운행 준비시간을 최소화하는 구동장치의 최적화 및 수상안정성 극대화 등 을 충족시키면서도 중량 증가 요인은 최소화하는 것이 가능할 것으로 점도된 바, 기존 방법으로는 기대할 수 없는 높은 수준의 수상운행능 구현이 가능할 것으로 기대된다.

따라서 지금까지 없던 부양장치의 방호기준을 정하고 세부설계를 확정하여 채택함으로써 전투장갑차의 수상운행능을 극대화하도록 하는 것이 시급하다.

참고자료