작은 축력을 받는 H형강 기둥의 베이스플레이트 기둥과 설계

Behavior and Design of H-Section Steel Column Base Plates for Light Concentric Load

심기철1) · 김은화2) · 김원기3)
Sim, Ki ChulKim, Eun HwaKim, Won Ki

요약: 국내에서는 아직 철골구조의 베이스플레이트에 대한 설계기준이 작성되어 있지 않으므로 원무 기준 및 자료들을 근거로 중심축하중을 받는 H형강 기둥 아래의 베이스플레이트에 대한 ADSC 설계식을 제안하고자 한다. 또한 제안한 설계식과 하중을 변화시키며 설계한 예제를 비교한 결과, 보통의 축력 전달을 위해서는 플레이트 면이 확장면 0.95d~0.8b, 이 사각형 길이면에 고정시킨 외측렌탈버브와 H형강 기둥 내부3면고정 플레이트로 가정한 것 중 위험한 쪽으로 설계된다. 그리고 작은 축력 받을 때에는 베이스플레이트의 위험단면 및 지압면은 해브 면에 따른 기존 플랜지 사이의 캐시넷리터비로 설계한다.

ABSTRACT: Since there are no specifications in Korea regarding the design of steel column baseplates that are subjected to concentric axial load, this paper proposes a more accessible stress design method for baseplates based on AISC specifications and guidelines. Some designs included in this paper were: (1) a full area of concrete bearing pressure under normal axial load and subsequent failure in external cantilevers at 0.95 d or 0.8 b f, and (2) a partial area of the pressure under a light axial load and subsequent failure as an internal cantilever model.

핵심 용어: 강재 베이스플레이트, 작은 축력, 캐시넷리터비, 지압면, 위험단면

KEYWORDS: Steel Base Plate, Light Load, Cantilever, Bearing Pressure, Critical Section

1. 서론

1.1 연구목적

강구조의 설계에 있어서 아직도 명료하지 못한 부분 중의 하나가 주각의 설계라고 볼 수 있다. 주각은 물체의 최하부에 위치하여 물체가 받는 여러 하중에 의한 응력이 최대로 되는 부분이므로 구조물의 구조강도상 가장 중요한 부분이다. 지진 등에 의한 과격의 강구조 설계물 재해에 있어서도 주각의 파괴에 의한 비율이 적지 않다.

현재 AISC의 기준을 근간으로 개정 작업이 원활한 강구조의 허용응력도 설계기준과 한계상태설계기준에서도 주각부분에서는 명료하지 못한 상태이며 전문가로서도 아직 연구성과가 명료하게 정리되어 있지 않다.

그 이유로서 주각부 형태가 다양한 점등도 주된이지 만 베이스플레이트의 하부로 전달되는 하중전달과정의 분명화성도 그 원인중 하나라고 볼 수 있으므로 주각부분의 구조적 특성을 파악하기 위한 연구를 하여 그것을 바탕으로 주각

부 설계법을 제시하는 것이 필요하다고 판단된다.

이에 본 연구에서는 가장 기본이 되는 중심축하중을 받는 철골구조의 구성을 조사하여 기존 문헌에서 제시하고 있는 축

압축력을 받는 H형강 기둥 아래의 베이스플레이트 설계법 중 적응축력 받을 때 고려되는 내측 캐시넷리터비에 대한 필요성

을 검토하고 H형강 기둥 아래의 베이스플레이트에 대한 설계

법을 제안한다.

본 논문에 대한 토의를 2005년 2월 28일까지 학회로 보내주시면 토의

회답을 게재하겠습니다.
1.2 기존 문헌 고찰

1.2.1 설계기준 및 지침
국내의 현행 강구조 허용응력설계법(ASD) 설계기준에서 철골 주간부 설계를 위해서는 콘크리트의 허용지압응력 \(P_p \)에 대한 것만이 제시되어 있다. 그 식은 다음과 같다.

\[
F_p = 0.35 f_{ck} \sqrt{A_2/A_1} \leq 0.7 f_{ck}
\]

여기에, \(f_{ck} \) : 콘크리트의 압축강도 (tf/cm²)
\(A_1 \) : 베이스플레이트의 면적 (cm²)
\(A_2 \) : 베이스플레이트 하부의 콘크리트면적 (cm²)

그림 1.1은 중심축하중을 받을 경우 설계방법의 개념에 따라 분류된 지점류를 보여주고 있다.

(a) 축하중이 큰 경우 (b) 축하중이 작은 경우
그림 1.1 중심축하중을 받을 경우 지점류

표 1.1은 H형강 기중 아래 베이스플레이트의 설계방법에 대한 문헌들을 비교하여 보여주고 있다.

| 표 1.1 H형강 기중의 베이스플레이트 AISC 설계 제안서 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| 구분 | 레이어의 변형 | 내부3면 고정 | 내측 성능 | 내부3면고정 + 내측 성능 |
| | B | C | B+C | |
| 8th | ○ | ○ | ○ | 1980 |
| 9th | ○ | ○ | ○ | 1989 |
| LRFD | 1st | ○ | ○ | ○ | 1984 |
| | 2nd | ○ | ○ | 2001 |
| Steel Design | ASD | ○ | ○ | |
| Guide Series | | | | |
| | Appendix C | ○ | ○ | | 1991 |
| Engineering | | | | |
| Journal/ASCE | | | | |
| | | | | |
| Steel Type | | | | |
| | | | | |

그림 2.1 시험체의 형상

시험체는 하중을 변화로 하여 설계한 예를 바탕으로 기중에 따른 최소 베이스플레이트 면적을 산정하였고 그 두께의 범위를 9 ~ 35mm 사이로 정하며 두께 종류가 9가지로 결정되었다. 그러므로 시험체 종류는 표 2.1과 같이 베이스플레이트 두께에 따라 총 9개로 결정되었다.

기초부의 콘크리트 페데스탈은 기중과 관계없이 모든 800~800~800mm의 크기로 계획되었고 내부에는 그림
2.2와 같이 주근과 미철근을 배근하도록 하였다.

![Table: 시험체 일람표]

<table>
<thead>
<tr>
<th>배이스플레이트 두께 (mm)</th>
<th>H형강 주가부시험체명</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SH-09</td>
</tr>
<tr>
<td>12</td>
<td>SH-12</td>
</tr>
<tr>
<td>16</td>
<td>SH-16</td>
</tr>
<tr>
<td>19</td>
<td>SH-19</td>
</tr>
<tr>
<td>22</td>
<td>SH-22</td>
</tr>
<tr>
<td>25</td>
<td>SH-25</td>
</tr>
<tr>
<td>30</td>
<td>SH-30</td>
</tr>
<tr>
<td>32</td>
<td>SH-32</td>
</tr>
<tr>
<td>35</td>
<td>SH-35</td>
</tr>
</tbody>
</table>

![Images: (a) 평면, (b) A-A' 단면, c) Anchor 상세, 그림 2.2 H형강 기초부 콘크리트 페데스탈 철근 상세]

2.2 실험방법

2.2.1 가력방법

시험체에 대한 압축실험은 1000tf 용량의 UTM을 이용하여 그림 2.3에서 보여지는 것처럼 기둥 단면 전체에 고르게 가해지도록 시험체를 설치하고 실험을 실시하였다.

![Image: 그림 2.3 시험체 가력방법]

2.2.2 계측방법

시험체에는 배이스플레이트의 수직변위를 측정하고자 LVDT를 설치하였으며 배이스 플레이트의 휘동량을 측정하고자 Strain gauge를 부착하였다. 그림 2.4는 이러한 계측기 설치의 수와 위치를 보여주고 있다. 기둥과의 하부에 기준점의 수직변위를 측정하고자 1개의 LVDT를 설치하였으며 배이스플레이트의 중앙에 설치한 지점에서 수직변위를 5~7개의 LVDT를 설치하였다. 이러한 LVDT로부터 측정된 수직변위의 기준점의 수직변위에 대하여 상대적인 변위를 계측하는데 이용된다. 배이스 플레이트에는 중요한 지점에 스트레인 케이지를 부착하였다. 시험체의 종류에 따라 5~6개의 1축계이지와 4개의 2축계이지를 부착하였다. 반력의 분포상태에 따른 휘동력을 조사하는데 이 결과를 이용할 예정이다.

![Image: 그림 2.4 계측기 설치 계획]

2.3 실험결과 및 분석

2.3.1. 구조재료 실험결과

1) 강재의 특성
기둥에 이용된 H형강과 배이스플레이트에 이용된 9종류의 강재에 대하여 인장실험을 실시하였다. 사용된 구조용 강재는 SM490이며 강재의 설계기준인장강도 \(F_y \) 는 3.3tf/cm\(^2\)이고 설계기준인장강도 \(F_u \) 는 5.0tf/cm\(^2\)이다.

표 2.2는 인장시험결과를 보여주고 있으며 기본적인 구조용 강재의 요구사항을 만족하는 것으로 나타났다.

2) 콘크리트의 특성
기초부 콘크리트 페데스탈을 제작하기 위한 콘크리트는 외부 레미콘회사로부터 공급받았으며, 제작시 주문한 콘크리트의 압축강도는 0.21tf/cm\(^2\)이었지만, 공사중 압축실험값과 압축강도는 0.165~0.182tf/cm\(^2\)로 나타났다. 그러므로 평균압축강도는 0.175tf/cm\(^2\)으로써 이상강도보다 다소 낮게 나타났다.
표 2.2 강재의 인장시험 결과

<table>
<thead>
<tr>
<th>강재</th>
<th>두께 (mm)</th>
<th>기준항부 강도 (tt/㎟)</th>
<th>항부 강도 (tt/㎟)</th>
<th>인장 강도 (tt/㎟)</th>
<th>연성율 (%)</th>
<th>항복비</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>3.3</td>
<td>3.78</td>
<td>5.60</td>
<td>28.8</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.3</td>
<td>3.71</td>
<td>5.49</td>
<td>27.3</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3.3</td>
<td>3.48</td>
<td>5.01</td>
<td>24.0</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3.3</td>
<td>4.40</td>
<td>5.94</td>
<td>24.3</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.3</td>
<td>3.46</td>
<td>5.36</td>
<td>29.0</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>3.3</td>
<td>3.42</td>
<td>5.35</td>
<td>28.0</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.3</td>
<td>3.60</td>
<td>5.56</td>
<td>28.0</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>3.3</td>
<td>3.23</td>
<td>5.27</td>
<td>30.5</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>3.3</td>
<td>3.49</td>
<td>5.54</td>
<td>29.8</td>
<td>0.63</td>
</tr>
</tbody>
</table>

2.3.2 시험체 실험결과 및 분석

시험체에 대한 압축시험은 1000t 용량의 UTM을 이용하였으며 천천히 압축력을 가하여 실험을 실시하였다. 그림 2.5는 실험 환경을 보여주고 있다.

그림 2.5 실험 환경

중심축하중을 받는 강재주간부의 기둥을 연구하기 위하여 9개의 주간부 시험체에 대한 실험을 실시하였다. 본 실험에서는 9개의 시험체에 대한 실험으로부터 얻어진 실험결과를 그림과 표로서 제시한다. 또한 실험하는 동안에 관찰된 시험체의 기둥과 파괴상태에 대하여 기술한다. 본 절에서 제시된 내용은 다음과 같다.

1) 시험체의 하중-변위곡선

시험체의 전체 기둥을 보여주는 하중과 기준점에서 측정된 변위를 나타낸다.

2) 시험체의 하중-베이스플레이트의 상대적 변위 곡선

기둥의 하부점의 변위를 기준으로 베이스플레이트의 여러 지점에서 측정된 상대적 변위를 곡선으로 나타낸다. 이 곡선은 베이스플레이트의 각각 위치에 따른 환위에 의한 변위의 정도를 나타내며 하중-상대변위 곡선으로 표현하였다.

3) 시험체의 하중-스트레인 곡선

임이 증가함에 따라 베이스플레이트의 스트레인계이지 측정 점의 변형률을 나타내는 곡선이다.

그림 2.6은 H형강 주간부 9개 시험체의 전체적인 기능을 보여주고 있다. 전체적인 하중-변위 곡선은 비슷한 양상을 보이고 있다. 하중이 증가하면서 베이스플레이트는 소실화되어 가는 힘을 보였으며 H형강 기둥에 국부하중이 발생하였 다. 그러나 H형강의 국부하중이 하중의 감소를 발생하게 하는 원인은 아닌 것으로 분석되었다. 시험체의 최대하중에 도달하여 베이스 플레이트의 항복에서의 변형 또는 콘크리트 케이블에 발생하는 수직균열에 의해 결정되었다고 분석되었다. 베이스플레이트의 두께가 큰 경우(그림 2.7)는 전자의 경우이다. 베이스플레이트가 두꺼운 경우(그림 2.8) 후자의 경우를 보였다. 실험중 도달한 최대하중은 270 ~ 395t이었으며 베이스 플레이트의 두께가 증가할수록 최대하중이 증가하는 경향을 보였다.

그림 2.6 H형강기둥 주간부 시험체의 하중-수직변위 곡선

그림 2.7 시험체 SH-12 베이스플레이트의 파괴형태
작은 축력으 받는 H형강 기둥의 베이스플레이트 거동과 설계

그림 2.8 시험체 SH-30 콘크리트 패데스탈의 파괴형태

그림 2.9는 H형강기둥 주각부의 베이스플레이트의 두께가 12mm인 시험체(SH-12)와 32mm인 시험체(SH-32)의 베이스플레이트에 설치된 LVDT로부터 측정된 수직변위를 보여주고 있다. 이 변수는 기둥의 하부에 설치된 기준점에 대한 상대변위를 나타내고 있다. 그림 2.9에서 베이스플레이트의 두께가 없는 경우 상대변위는 위치에 따라 차이를 보이고 있으나 베이스플레이트의 두께가 두꺼운 경우 사용성 하중상태에서는 전체적으로 상대변위의 크기가 작고 거의 같은 양상을 보이고 있음을 알 수 있다. 이러한 현상은 베이스플레이트의 두께가 없는 경우 반발력 등분포가 작용하지 않으니 하부의 내부 텐더리비 감염에 의한 설계법이 적용되어야 하고 두께가 두꺼운 경우 반발력 등분포 설계법에 의해 설계 하여야 할을 의미한다는 것을 보여주고 있다.

3. 전산해석

3.1. 해석계획

응력도와 변형도 분포의 경향을 파악하기 위해 전산해석을 실시한다. 시험체 중 베이스플레이트 두께가 16mm인 시험체를 MIDAS-Gen으로 산정해석, ANSYS로 비선형 해석을 수행하는 것으로 계획하였다. 기둥과 베이스플레이트의 강재는 SM490이고 콘크리트 강도는 $f_{ck} = 0.21 \text{ tf/cm}^2$이다.
MIDAS-Gen으로 시험해석 할 경우 콘크리트 패데스탈은 Solid Elements, 베이스플레이트는 Plate wizard, 기둥은 Plate wizard, 요소로 모델링하도록 계획하였다. 강재주각의 기둥, 베이스플레이트, 콘크리트 패데스탈, 이 세 개의 부분이 만나 일체가동을 하기 위해 그림 3.2와 같이 세 개의 부분이 한 점에서 만나게 해야하며 MESH를 할 때 이런 점을 고려하였다. 또한 베이스플레이트의 응력 상태에 대해 좀더 정확히 알도록 베이스플레이트 부분은 다른 부분에 비해 좀더 총각하게 MESH를 구성하도록 계획하였다. 또한 기존 돌출에서 철근 주가 위치인 상태를 고려하여 모델링에서는 콘크리트 패데스탈 하부 중앙의 9개만 δ_x, δ_y, δ_z를 구축하고 나머지 부분은 δ_0만 구축하도록 계획하였다. 전체 하중이 기둥단면에 고르게 가해지도록 계획하였다.

ANSYS로 비선형 해석을 할 경우 강재주각에 사용되는 재료의 성질과 지지형태, 그리고 MESH는 시험해석의 경우와 동일하게 하였고 강재주각에 사용되는 재료만 비선형을 고려하여 요소를 선택하였다.

3.2 해석방법

선형해석은 MIDAS-Gen, 비선형 해석은 ANSYS를 이용하여 해석을 실시하였다. 그림 3.2에 보이는 바와 같이 모델링하였으며 사용성 상태에서의 최대하중인 250kF를 적용하였다.

그림 3.2 모델링 형태와 응력분포

3.3 해석결과 및 분석

(1) MIDAS 해석

그림 3.3 MIDAS 해석

(2) ANSYS 해석

그림 3.4 ANSYS 해석

4. 설계법 제안

중심 축하중을 받는 베이스플레이트의 ASD 설계법을 제안하고자 한다.

베이스플레이트 설계는 크게 두 단계로 나누어진다.
1) 베이스플레이트의 면적정
2) 베이스플레이트의 두께정

1)은 콘크리트의 강도와 콘크리트와 베이스플레이트의 면적비에 의해 산정되는 것으로 4.1절에서 설명하고 있는 바와 같이 산정한다.
2)는 위험단면을 중심으로 약간은 캔틸레버로 내축은 내부 고성을 간주하여 두께를 산정하는 것으로 4.2절에서 설명하고 있는 바와 같이 산정한다.

4.1 베이스플레이트 면적 산정

축하중을 받는 베이스플레이트는 하중지압응력이 균등하게 분포하는 것으로 가정하여 필요한 베이스플레이트의 면적을 산정한다. 콘크리트의 하중지압응력 F_p은 콘크리트의 강도와 콘크리트와 베이스플레이트의 면적비에 의해 다음과 같이 구할 수 있다.

$$F_p = 0.35 f_{ck} \sqrt{A_2/A_1} \leq 0.7 f_{ck} \tag{2}$$

그리므로 콘크리트의 하중지압응력에 의해 필요한 베이스플레이트의 면적을 구할 수 있다.

$A_2 < 4A_1$인 경우는 다음과 같다.

$$A_1 = \left(\frac{1}{A_2} \right) \left(\frac{F}{0.35 f_{ck}} \right)^2 \tag{3}$$

$A_2 \geq 4A_1$인 경우는 다음과 같다.
\[A_1 = \frac{P}{0.7f_{ck}} \]
\[M = \frac{f_p \cdot F_b}{2} \]
\[S = \frac{b \cdot t_{po}^2}{6} = \frac{1 \times t_{po}^2}{6} \]
\[F_b = 0.75F_y \]
\[\frac{f_p \cdot F_b}{2} \cdot \frac{6}{t_{po}^2} \leq \frac{3}{4}F_y \]
\[t_{po} \geq \sqrt{\frac{4 \cdot f_p \cdot F_b}{F_y}} = 2l \]
\[\sigma = \frac{M}{S} \leq F_b \]
\[f_p = \frac{P}{A_1} \]
이 기경의 웨브.Exception 발생 후 풍선
에 대해서는 다음과 같이 기경의 웨브
(1)에 관한 풍선의 특성
(2)는 푸익.

\[t_{pl} = \alpha \cdot \beta / F_y \] ... (11)

\[\alpha = 1/3 \left(\frac{6\eta^2 - \sqrt{1 - 12\eta^2 + 1}}{2\eta^2 + \sqrt{1 + 12\eta^2 - 1}} \right) \approx 1/2 \sqrt{\eta} \] ... (12)

\[\eta = \frac{d}{b_y} \] ... (13)

\[\therefore t_{pl} \geq 2 \left(1/4 \sqrt{d \cdot b_y} \right) \frac{f_p}{F_y} \] ... (14)

이에선, \(t_{pl} \): 내부 3변의 사이에서 요구되는
베이스플레이트 두께 (cm)

4.3 비교·분석

<table>
<thead>
<tr>
<th>실험 측 명</th>
<th>베이스 플레이트 면적 (cm²)</th>
<th>베이스 플레이트 두께 (cm)</th>
<th>실험값 (ASD)</th>
<th>실험값 (Yield)</th>
<th>실험값/설계값</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH-09</td>
<td>1.517</td>
<td>0.9</td>
<td>186</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>SH-12</td>
<td>1.517</td>
<td>1.2</td>
<td>186</td>
<td>43</td>
<td>32</td>
</tr>
<tr>
<td>SH-16</td>
<td>1.517</td>
<td>1.6</td>
<td>186</td>
<td>76</td>
<td>57</td>
</tr>
<tr>
<td>SH-19</td>
<td>1.517</td>
<td>1.9</td>
<td>186</td>
<td>107</td>
<td>80</td>
</tr>
<tr>
<td>SH-22</td>
<td>1.517</td>
<td>2.2</td>
<td>186</td>
<td>143</td>
<td>108</td>
</tr>
<tr>
<td>SH-25</td>
<td>1.517</td>
<td>2.5</td>
<td>186</td>
<td>185</td>
<td>139</td>
</tr>
<tr>
<td>SH-30</td>
<td>1.517</td>
<td>3.0</td>
<td>186</td>
<td>267</td>
<td>200</td>
</tr>
<tr>
<td>SH-32</td>
<td>1.517</td>
<td>3.2</td>
<td>186</td>
<td>303</td>
<td>228</td>
</tr>
<tr>
<td>SH-35</td>
<td>1.517</td>
<td>3.5</td>
<td>186</td>
<td>363</td>
<td>273</td>
</tr>
</tbody>
</table>

5. 결론

본 연구에서는 H형 강재 기중기 사용시, 축적축력을 받는
베이스플레이트의 설계를 제안하기 위해 수행한 진산해석을
통해 주요부의 일반적인 응력분포에 대해서 알 수 있었으며,

설계를 통해서는 베이스플레이트의 두께에 따라 합성력의 분포가 달라지는 것을 알 수 있었다. 또한 진산해석에서 내측
과 외측의 합성력도 다르게 분포하므로 동 단면을하도록
설계하도록 하였다.

5.1. 베이스플레이트 면적 사정

\[A_2 < 4A_1 \text{ 일 경우} \]

\[A_1 = \left(\frac{1}{A_2} \right) \left(\frac{P}{0.35f_{ck}} \right)^2 \] ... (15)

\[A_2 \geq 4A_1 \text{ 일 경우} \]

\[A_1 = \frac{P}{0.7f_{ck}} \] ... (16)

5.2. 베이스플레이트 두께 사정

- 내측: 케달레바법

\[t_{ps} \geq \sqrt{\frac{4 \cdot f_p}{f_y}} \] ... (17)

- 내측: 합성선 이론을 적용한 내부 3변의

\[t_{pl} \geq 2 \left(1/4 \sqrt{d \cdot b_y} \right) \frac{f_p}{F_y} \] ... (18)

향후 연구에서는 기중기 H형 강재 사용시, 축적축력
과 모멘트를 함께 받는 베이스플레이트에 대해서도 이론적·
실험적 해석적 연구가 수행되어야 할 것이다.

감사의 글

본 연구는 2002-2005년도 한국과학재단 목적기초연구
(과제번호 : R01-2002-000-00239-0)지원으로 수행되었으
며 이에 감사드립니다.

참고 문헌

AISC(1980). Manual of Steel construction. 8th
Edition. American Institute of Steel Construction,
pp.3-99 through 3-103
AISC(1989). Manual of Steel construction. 9th
Edition. American Institute of Steel
 작은 축력을 받는 H형강 기둥의 베이스플레이트 거동과 설계

Construction, pp.3-106 through 3-111

(접수일자 : 2004. 1. 19 / 심사일 2004. 2. 25 / 심사완료일 2004. 5. 28)