환경오염 저감비용이 무역수지에 미치는 영향

전 병 목*

<table>
<thead>
<tr>
<th></th>
<th>I. 서 론</th>
<th>II. 모형의 설정</th>
<th>III. 자료</th>
<th>IV. 실증분석</th>
<th>V. 결 론</th>
</tr>
</thead>
</table>

I. 서 론

환경규제가 산업의 경쟁력에 미치는 영향에 대해서는 많은 논란이 있어 왔다. 전통적인 견해는 환경규제와 산업경쟁력 사이에 상호 상충관계(trade-off)가 있다는 것이다. 즉, 환경규제는 오염저감비용의 지출로 이어지기 쉽지 않을 때보다 기업의 비용을 상승시키게 된다. 국제무역에서는 환경규제를 엄격하게 적용하는 나라의 기업은 그렇지 않은 나라의 기업에 비해 가격경쟁력이 떨어지기 때문에 국가의 환경규제 정도에 따라 산업구조의 변화를 초래할 수 있다는 것이다.

이는 반대로 환경규제와 산업경쟁력 사이에 반대의 관계, 즉 환경규제가

* 한국조세연구원 연구원.
전 면 목

그러나 산업연관표를 이용한 선행연구들 모두 오염저감비용 지출이 야기하는 직접적 무역수지에 영향을 얼마나 고려한 문제점이 있다. 즉, 환경규제로 인한 각
환경오염 저감비용이 무역수지에 미치는 영향

본 연구의 구성은 다음과 같다. 제Ⅱ장에서는 분석을 위한 모형을 설명하였 다. 오염저감비용 지출이 야기하는 생산자물가의 영향과 이를 이용한 무역수 지에의 영향분석을 위한 것이다. 제Ⅲ장에서는 실증분석에 이용된 자료를 설명하였다. 제Ⅳ장에서는 오염저감비용 지출이 산업별 무역수지에 미치는 영향을 실증분석을 통해 살펴보았으며, 제Ⅴ장은 결론이다.

II. 모형의 설정

- 197 -
1. 생산자물가에의 영향

환경규제로 야기되는 오염저감비용이 생산자물가에 미치는 영향을 살펴보기 위해서는 산업연관표의 가격 균형방정식을 이용할 수 있다. 즉, 각 부문 생산물의 단위가격은 단위당 중간투입액과 임금 등 부가가치액으로 구성되며, 단위당 중간투입액은 물량적 투입계수에 투입되는 상품의 가격을 곱하여 산정할 수 있다. 이 때 환경규제로 인한 비용지출은 크게 관련 고용자 등에 대한 경상지출, 설비의 감가상각, 부담금 등으로 산업연관표상 부가가치에 해당되므로 부가가치 부문을 두 부분으로 분리하였다. 환경규제로 인한 지출은 부가가지에 포함되는 지출 이외에 오염저감을 위한 중간재화의 구입 또한 포함하므로 정확한 분석을 위해서는 투입산출계수에 대한 수정을 필요로 하나 자료한계로 인해 고려하지 않았다. 동일한 중간투입도 국내상품과 수입상품의 가격 차이가 발생할 수 있으므로 국내부문과 수입부문으로 구분하여 구성하였다. 이렇게 유도된 가격 균형방정식은 다음과 같다.

\[P_d = A_d'P_d + A_m'P_m + A_nV_n + E \]

\[A_d' : \] 국내상품 투입계수행렬의 전치행렬
\[A_m' : \] 수입상품 투입계수행렬의 전치행렬
\[P_d : \] 국내상품의 단위가격 벡터
\[P_m : \] 수입상품의 단위가격 벡터
\[A_n : \] 부가가치계수의 대각행렬
\[V_n : \] 부가가치 단위가격 벡터
\[E : \] 직접오염저감 단위가격 벡터

동 방정식을 환경규제로 인한 가격변동을 방정식으로 변환하면 다음과 같다.

동 방정식을 환경규제로 인한 가격변동을 방정식으로 변환하면 다음과 같다.

1) 가격변동을 방정식으로의 전환시 부분별 비중이 추가되어야 하나 투입계수행렬 자체가 이미 총 투입액에 대한 비중으로 정의되어 있기 때문에 부분이 필요치 않다.
환경오염 저감비용이 무역수지에 미치는 영향

\[\bar{P}_d = A_d' \bar{P}_d + A_m' \bar{P}_m + A_n \bar{V}_n + \bar{E} \]

이 때 \(\bar{P}_d = dP_d/P_d, \bar{P}_m = dP_m/P_m, \bar{V}_n = dV_n/V_n \), 그리고 \(\bar{E} = dE/E \)이다. 여기서는 환경규제로 인한 오염저감비용이 물가에 미치는 영향을 살펴보기 위하여 수입가격과 부가가치율의 변화가 없는 경우, 즉 \(\bar{P}_m = \bar{V}_n = 0 \)을 가정하였다. 또한 분석의 편의를 위해 각 산업부문별 가격 (\(P_d \))은 단위가격으로 가정하였다. 환경규제가 아기하는 오염저감비용의 지출로 인한 국내상품 가격에의 영향은 다음과 같이 단순화될 수 있다.

\[\bar{P}_d = (I - A_d')^{-1} \bar{E} \]

환경규제가 없는 경우를 기준으로 할 경우 환경규제를 도입하므로 인한 직접적비용은 오염저감비용 자체 (\(E = E \) = 오염저감비용, 즉 오염저감비용의 직접효과)가 되며 이는 각 상품의 가격을 동일한 수준만큼 직접적으로 상승시키게된다. 또한 국내생산 상품을 중간재로 이용하는 산업에도 그 상대적 투입비중에 따라 간접적으로 가격에 영향을 미치게 된다. 이러한 산업의 투입관계로 고려할 경우 환경규제가 국내상품 가격에 미치는 총 영향은 다음과 같이 나타낼 수 있다.

\[\bar{P}_d = (I - A_d')^{-1} E = E + (I - A_d') E + (I - A_d')^2 E + \cdots \]

총 가격효과는 오염저감비용의 지출에 따른 직접적인 효과 \(E \)와 각 산업간 투입-산출관계를 통한 간접효과의 합으로 나타난다. 이 때 간접효과는 산업간의 연관관계를 통해 나타나는 가격효과의 무한합(infinite sum)으로 표현된다. 한편 총 가격효과는 비용요인, 즉 환경규제로 인한 오염저감비용의 지출이 아기하는 최대한의 물가상승효과만을 나타내며 가격변동의 파급시차는 나타내지 않는다. 이렇게 도출된 가격효과는 무역수지에 대한 영향을 산출하는데 이용된다.

- 199 -
전 면목

2. 무역수지에 대한 영향

환경규제가 무역수지에 미치는 영향은 오염저감비용 지출로 인한 물가상승이 야기하는 무역수지 변화이다. 산업별 무역수지에 대한 영향은 다음과 같은 무역수지 방정식으로부터 유도할 수 있다.

\[BT_i = P_{d,i}EX_i - P_{d,i}IM_i \]

\(BT_i \): i산업의 무역수지
\(P_{d,i} \): i산업의 국내가격
\(EX_i \): i산업의 수입
\(IM_i \): i산업의 수출

환경규제로 인한 국내상품 가격변화가 무역수지에 미치는 영향은 다음과 같이 무역수지 방정식을 오염저감비용에 대해 미분함으로써 유도할 수 있다.

\[\frac{\partial BT_i}{\partial E_j} = \left(\frac{\partial P_i}{\partial E_j} EX_i + P_i \frac{\partial EX_i}{\partial P_i} \frac{\partial P_i}{\partial E_j} - \frac{\partial P_i}{\partial E_i} IM_i \right) \]

\[- P_i \frac{\partial IM_i}{\partial P_i} \frac{\partial P_i}{\partial E_j} + P_i \sum_{k \neq i} \left(\frac{\partial EX_i}{\partial P_k} - \frac{\partial IM_i}{\partial P_k} \right) \frac{\partial P_k}{\partial E_j} \]

\[= (EX_i(1+\epsilon_X, - IM_i(1+\epsilon_M,)) \frac{\partial P_i}{\partial E_j} \]

\[+ P_i \sum_{k \neq i} \left(\frac{\partial EX_i}{\partial P_k} - \frac{\partial IM_i}{\partial P_k} \right) \frac{\partial P_k}{\partial E_j} \]

여기서 \(\epsilon_X \),는 i산업 수출의 가격탄력성, \(\epsilon_M \)는 i산업 수입의 가격탄력성이 다. 앞의 식의 첫 번째 항목은 i산업에 대한 오염저감비용 지출이 i산업 가격 변화를 통해 무역수지에 미치는 영향으로 환경규제로 인한 직접적인 효과라 할

2) 비용의 변동이 모두 제품가격에 반영된다는 전제 하에서 물가파급효과를 나타내고 있으나 실제로는 수요 요인이나 경쟁 요인 등에 의해 계산가능보다 가격변동이 작을 수 있다.
환경오염 저감비용이 무역수지에 미치는 영향

수 있다. 두 번째 항목은 각 산업의 오염저감비용 지출이 \(i\) 산업 이외 산업의 가격변화를 통해 \(i\) 산업 무역수지에 미치는 간접적인 효과이다. 즉, 적절적인 효과는 분석대상 산업의 가격변화를 통한 효과이며 간접적인 효과는 분석대상 이외 산업의 가격변화를 통한 영향이다.

간접적인 효과의 계량을 위해서 다음과 같이 식을 재구성하였다.

\[
\frac{\partial BT_i}{\partial E_j} = \left(EX_i (1 + \varepsilon_{X_i}) - IM_i (1 + \varepsilon_{M_i}) \right) \frac{\partial P_i}{\partial E_j} + \sum_{k \neq i} \left(\frac{\partial EX_i}{\partial P_i} \frac{\partial P_i}{\partial P_k} P_i - \frac{\partial IM_i}{\partial P_i} \frac{\partial P_i}{\partial P_k} P_i \right) \frac{\partial P_k}{\partial E_j}
\]

\[
= \left(EX_i (1 + \varepsilon_{X_i}) - IM_i (1 + \varepsilon_{M_i}) \right) \frac{\partial P_i}{\partial E_j} + \sum_{k \neq i} \left(EX_i \varepsilon_{X_i} - IM_i \varepsilon_{M_i} \right) \frac{\partial P_k}{\partial E_j} \frac{\partial P_i}{\partial P_k}
\]

이 때 \(\frac{\partial P_i}{\partial P_k}\)는 특정 산업 \((k)\)의 가격변동이 \(i\)산업에 미치는 물가의급효과로서 산업연관표를 이용하여 다음과 같이 계량할 수 있다.

\[
P_d^k = A_d^k \hat{P}_d^k + a_k \bar{P}_d^k
\]

\(A_d^k\): 해당 부문 \((k\)번 부문)이 제거된 국산투입계수행렬의 전치행렬

\(\hat{P}_d^k\): 해당 부문 \((k\)번 부문)이 제거된 국내상품 가격변동량 벡터

\(a_k\): 국산투입계수행렬의 전치행렬 중 \(k\)번 부문의 열 벡터

(단, 해당 부문의 제수는 제외)

\(\bar{P}_d^k\): 해당 부문의 가격변동량

이 때 \(k\)번 부문의 가격변동에 의한 타 부문 물가효과는 다음과 같다.

\[
\hat{P}_d^k = (I - A_d^k)^{-1} a_k \bar{P}_d^k
\]

전 병 목

에서는 시도되지 않은 것으로 완전한 무역효과의 계량을 위한 중요한 진전이라 할 수 있다.

Ⅲ. 자 료

환경규제로 인한 오염저감비용은 크게 오염저감시설의 감가상각비, 관련 업무 수행을 위한 경상지출, 오염물질 배출에 따른 부담금 등 정부에 대한 이전지출, 기술개발투자, 규제관련 지출에 대한 기회비용 등으로 나누어 볼 수 있다.

두 번째로 환경규제 업무에 관련한 경상지출은 한국은행에서 제공하고 있는 산업별 오염저감비용 지출 중 경상지출을 이용하였다. 이러한 경상지출의 분류가 본 보고서의 산업분류보다 자세하지 않은 경우에는 산업별 감가상각비의 비율로 배분하였다. 세 번째, 부담금 등 정부에 대한 이전지출의 규모는 한국은행에서 전체규모를 제공하고 있으므로 이를 경상비용의 비중에 따라 산업별로 배
환경요염 저감비용이 무역수지에 미치는 영향

표 1. 산업별 오염저감비용 지출액

(단위: (경상)백만 원)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 농림수산업</td>
<td>114,222</td>
<td>119,509</td>
<td>148,670</td>
</tr>
<tr>
<td>2. 광산업</td>
<td>9,257</td>
<td>7,694</td>
<td>8,480</td>
</tr>
<tr>
<td>3. 음식료품, 담배</td>
<td>200,494</td>
<td>262,983</td>
<td>285,506</td>
</tr>
<tr>
<td>4. 섬유 및 가죽, 신발</td>
<td>179,030</td>
<td>222,636</td>
<td>224,523</td>
</tr>
<tr>
<td>5. 목재 및 종이</td>
<td>15,024</td>
<td>25,111</td>
<td>16,337</td>
</tr>
<tr>
<td>6. 인쇄</td>
<td>1,966</td>
<td>1,192</td>
<td>1,428</td>
</tr>
<tr>
<td>7. 석유 및 석탄</td>
<td>146,711</td>
<td>175,027</td>
<td>181,253</td>
</tr>
<tr>
<td>8. 화학 및 고무</td>
<td>532,929</td>
<td>851,093</td>
<td>974,662</td>
</tr>
<tr>
<td>9. 비금속광물</td>
<td>93,099</td>
<td>91,879</td>
<td>94,778</td>
</tr>
<tr>
<td>10. 1차금속</td>
<td>440,224</td>
<td>515,691</td>
<td>660,897</td>
</tr>
<tr>
<td>11. 금속제품</td>
<td>25,545</td>
<td>54,362</td>
<td>67,949</td>
</tr>
<tr>
<td>12. 일반기계</td>
<td>26,495</td>
<td>16,268</td>
<td>16,441</td>
</tr>
<tr>
<td>13. 전기전자</td>
<td>267,690</td>
<td>417,191</td>
<td>395,692</td>
</tr>
<tr>
<td>14. 경밀기계</td>
<td>473</td>
<td>2,359</td>
<td>1,991</td>
</tr>
<tr>
<td>15. 운송장비</td>
<td>162,896</td>
<td>174,994</td>
<td>212,963</td>
</tr>
<tr>
<td>16. 기타제조업</td>
<td>23,995</td>
<td>18,503</td>
<td>22,774</td>
</tr>
<tr>
<td>17~28. 기타</td>
<td>1,099,319</td>
<td>1,304,437</td>
<td>1,485,431</td>
</tr>
<tr>
<td>합 계</td>
<td>3,339,369</td>
<td>4,260,927</td>
<td>4,789,775</td>
</tr>
<tr>
<td>(제조업합계)</td>
<td>(2,116,571)</td>
<td>(2,829,288)</td>
<td>(3,147,194)</td>
</tr>
</tbody>
</table>

자료: 설비투자계획조사, 산업은행・한국은행 내부자료.

분석하였다. 그리고 오염저감관련 지출에 대한 기회비용은 총 지출(감가상각비 + 정상비용+이전지출)에 대해 3년간기 회사채 수익률을 적용하여 도출하였다. 한편 환경관련 기술개발투자(R&D)는 전체기술개발 투자액과 분리·집계되지 않는 문제점으로 인해 고려하지 않았다. 추계결과에 따르면 우리나라는 오염저감비용 총 지출은 2000년 기준 4조 7,898억 원으로 1995년 3조 3,394억 원에 비해 43% 이상 증가한 수준으로 나타났으며, 제조업부문의 지출은 2000년 3조 1,472억 원으로 총 지출의 65.7%수준으로 나타났다. 제조업 부문별로는 화학 및 고
전 방 목

표 2 산업별 수출입 가격 탄성치

<table>
<thead>
<tr>
<th>산업분류</th>
<th>수출탄성치</th>
<th>수입탄성치</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 농림수산업</td>
<td>-0.26951**(-2.78805)</td>
<td>-0.04411(-1.26744)</td>
</tr>
<tr>
<td>2. 광산업</td>
<td>-0.40382*(-2.46057)</td>
<td>0.00126(0.01175)</td>
</tr>
<tr>
<td>3. 음식료품, 닭백</td>
<td>-0.28166**(-3.11594)</td>
<td>0.27125(2.08621)</td>
</tr>
<tr>
<td>4. 섬유 및 가죽, 산발</td>
<td>-0.16208*(-2.41991)</td>
<td>0.05851(1.31964)</td>
</tr>
<tr>
<td>5. 목재 및 종이⁹</td>
<td>-0.80144**(-5.10141)</td>
<td>0.26149**(3.79430)</td>
</tr>
<tr>
<td>7. 석유 및 석탄</td>
<td>-0.71823*(-2.16610)</td>
<td>0.10324*(2.59205)</td>
</tr>
<tr>
<td>8. 화학 및 고무</td>
<td>-0.55260**(-5.96572)</td>
<td>0.22463(2.23263)</td>
</tr>
<tr>
<td>9. 비금속광물</td>
<td>-0.26480*(-2.05116)</td>
<td>0.21616(1.92090)</td>
</tr>
<tr>
<td>10. 1차금속⁶</td>
<td>-0.49968**(-6.64174)</td>
<td>0.46223**(4.80055)</td>
</tr>
<tr>
<td>11. 일반기계</td>
<td>-0.14765*(-2.03301)</td>
<td>0.17110**(2.51454)</td>
</tr>
<tr>
<td>12. 전기전자</td>
<td>-0.76346**(-8.00719)</td>
<td>0.57825**(4.72253)</td>
</tr>
<tr>
<td>13. 정밀기기</td>
<td>-0.28006**(-5.74201)</td>
<td>0.70719**(15.01148)</td>
</tr>
<tr>
<td>14. 운송장비</td>
<td>-0.24978**(-2.77756)</td>
<td>0.17888(1.47790)</td>
</tr>
<tr>
<td>15. 기타제조업</td>
<td>-0.06503(-0.80774)</td>
<td>0.03900(0.30210)</td>
</tr>
<tr>
<td>총 수출입</td>
<td>-0.18483**(-3.49540)</td>
<td>0.12186*(2.11939)</td>
</tr>
</tbody>
</table>

주: 1) 괄호 안은 t-값임.
 2) **와 *는 각각 1%, 5%의 통계적 유의성을 의미함.
 3) 안개산업(6)과의 자료분리 어려움으로 통합하여 추정함.
 4) 금속제품산업(11)과의 자료분리 어려움으로 통합하여 추정함.

무(8), 1차금속(10)과 전기전자(13) 업종의 오염저감비용 지출이 많은 것으로 추정되었다.

환경오염 저감비용이 무역수지에 미치는 영향

아니 비교가 간다는. 다만 동 탄성성의 경우 미국의 국가로부터의 영향이 배제되는 한계가 있다.

추정된 수출입 탄성성의 살펴보면 대부분의 경우 경제적 이론에 부합하는 부분을 보여주고 있으나 농림수산업의 수입탄성성의 경우 반대부호를 보여주고 있다. 그러나 동 추정치의 통계적 유의성이 낮아 큰 의미를 부여할 수는 없다. 수출산업의 경우 목재 및 종이제품의 전기전자제품의 가격탄성성이 높게 나타났으며 수입탄성성의 정밀기기와 전기전자제품이 높게 추정되었다. 수출입 탄성 성을 기준으로 할 때 가격변화로 인해 무역수지가 가장 크게 변화하는 업종은 전기전자업종으로 나타나 전기전자업종에서의 높은 국제경쟁력을 간접적으로 보여주는 결과라 할 수 있다.

Ⅳ. 실증분석

오염저감비용 지출이 직접적으로 생산자물가에 미치는 영향은 평균 0.5% 미만으로 상당히 낮은 수준을 보여주었다. 또한 그 추세도 점차 하락하는 경향을 보여주고 있다. 1995년의 경우 생산자물가지수의 영향3)이 0.44%에서 1998년 0.43%, 2000년에는 3.83%수준까지 하락하였다. 이는 오염저감비용의 절대규모 증가에도 불구하고 전체비용구조에서 차지하는 비중은 감소하였음을 보여준다.

산업별 수준을 살펴보면 환경규제를 많이 받는 것으로 알려진4) 화학 및 고무 (8), 비금속광물(9), 그리고 1차금속(10) 업종이 분석대상연도 모두에 걸쳐 0.5% 이상의 비교적 높은 상승률을 보여준다. 반면 목재 및 종이(5) 업종은 알려진 바와 다르게 오염저감비용 지출로 인한 직접적 물가상승 효과가 낮았다. 직접적

3) 오염저감비용 지출이 전체생산자물가에 미치는 영향은 각 산업별 물가 가중치를 이용하여 계산하였다.
4) Low and Yates (1992)는 환경오염산업으로 필드 및 종이, 목재산업, 석유석탄산업, 화학산업, 시멘트, 철강, 비철금속, 금속제조업을 열거하였다.
전 병 목

〈표 3〉 산업별 오염저감비용의 직접적 물가효과
(단위: %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 농림수산업</td>
<td>0.3576</td>
<td>0.3563</td>
<td>0.3883</td>
</tr>
<tr>
<td>2. 광산업</td>
<td>0.2844</td>
<td>0.3030</td>
<td>0.3202</td>
</tr>
<tr>
<td>3. 음식료품, 담배</td>
<td>0.4784</td>
<td>0.4948</td>
<td>0.4832</td>
</tr>
<tr>
<td>4. 섬유 및 가죽, 신발</td>
<td>0.5154</td>
<td>0.4940</td>
<td>0.4790</td>
</tr>
<tr>
<td>5. 목재 및 종이</td>
<td>0.1152</td>
<td>0.1748</td>
<td>0.0969</td>
</tr>
<tr>
<td>6. 인 섭</td>
<td>0.0257</td>
<td>0.0155</td>
<td>0.0144</td>
</tr>
<tr>
<td>7. 석유 및 석탄</td>
<td>0.7883</td>
<td>0.4889</td>
<td>0.3410</td>
</tr>
<tr>
<td>8. 화학 및 고무</td>
<td>0.9912</td>
<td>1.1925</td>
<td>1.0997</td>
</tr>
<tr>
<td>9. 비금속광물</td>
<td>0.5862</td>
<td>0.5481</td>
<td>0.5519</td>
</tr>
<tr>
<td>10. 빈가금속</td>
<td>1.0533</td>
<td>0.9475</td>
<td>1.1283</td>
</tr>
<tr>
<td>11. 금속제품</td>
<td>0.1538</td>
<td>0.2897</td>
<td>0.3235</td>
</tr>
<tr>
<td>12. 일반기계</td>
<td>0.0887</td>
<td>0.0567</td>
<td>0.0381</td>
</tr>
<tr>
<td>13. 전기전자</td>
<td>0.4049</td>
<td>0.4457</td>
<td>0.2778</td>
</tr>
<tr>
<td>14. 정밀기계</td>
<td>0.0107</td>
<td>0.0496</td>
<td>0.0293</td>
</tr>
<tr>
<td>15. 운송장비</td>
<td>0.3444</td>
<td>0.3573</td>
<td>0.2854</td>
</tr>
<tr>
<td>16. 기타조업</td>
<td>0.3017</td>
<td>0.2513</td>
<td>0.2276</td>
</tr>
<tr>
<td>17~28. 기타</td>
<td>0.2711</td>
<td>0.2480</td>
<td>0.2108</td>
</tr>
<tr>
<td>합 계</td>
<td>0.4351</td>
<td>0.4282</td>
<td>0.3330</td>
</tr>
<tr>
<td>(제조업합계)</td>
<td>(0.5322)</td>
<td>(0.5336)</td>
<td>(0.4776)</td>
</tr>
</tbody>
</table>

물가효과의 추세는 그 절대적 수준이 낮은 광산업(2)과 금속제품(11) 업종만 증가추세를 보여주고 있으며 타 산업은 저어도 크게 증가하는 추세는 보여주지 않는다. 이는 직접적인 오염저감비용 지출이 높은 산업의 경우 동태적으로 투입요소의 구성변화를 통해 그 영향을 줄이려는 유인이 작용한 결과일 수 있다.

한편 각 부문별 오염저감비용의 지출로 야기되는 산업부문별 물가상승률이 특정산업의 물가에 미치는 간접적인 효과는 대체적으로 직접적인 효과와 비슷한 크기의 효과를 보여주고 있다. 따라서 이러한 간접효과를 배제한 기존의 연구는 오염저감비용 지출의 효과를 상당히 저평가하는 문제점이 있다. 결과에 따

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 농림수산업</td>
<td>0.2749</td>
<td>0.3547</td>
<td>0.3041</td>
</tr>
<tr>
<td>2. 광산업</td>
<td>0.2147</td>
<td>0.2050</td>
<td>0.1884</td>
</tr>
<tr>
<td>3. 음식료품, 담배</td>
<td>0.4380</td>
<td>0.4529</td>
<td>0.4627</td>
</tr>
<tr>
<td>4. 섬유 및 가죽, 신발</td>
<td>0.5019</td>
<td>0.4994</td>
<td>0.5605</td>
</tr>
<tr>
<td>5. 목재 및 종이</td>
<td>0.2702</td>
<td>0.3164</td>
<td>0.2941</td>
</tr>
<tr>
<td>6. 인쇄</td>
<td>0.2842</td>
<td>0.3367</td>
<td>0.3280</td>
</tr>
<tr>
<td>7. 석유 및 석탄</td>
<td>0.0850</td>
<td>0.0607</td>
<td>0.0524</td>
</tr>
<tr>
<td>8. 화학 및 고무</td>
<td>0.5762</td>
<td>0.6626</td>
<td>0.6577</td>
</tr>
<tr>
<td>9. 비금속광물</td>
<td>0.4271</td>
<td>0.4066</td>
<td>0.4058</td>
</tr>
<tr>
<td>10. 1차금속</td>
<td>0.9373</td>
<td>0.8544</td>
<td>0.9513</td>
</tr>
<tr>
<td>11. 금속제품</td>
<td>0.8266</td>
<td>0.7162</td>
<td>0.7823</td>
</tr>
<tr>
<td>12. 일반기계</td>
<td>0.5497</td>
<td>0.5325</td>
<td>0.5606</td>
</tr>
<tr>
<td>13. 전기전자</td>
<td>0.3711</td>
<td>0.3274</td>
<td>0.3011</td>
</tr>
<tr>
<td>14. 정밀기계</td>
<td>0.4204</td>
<td>0.3764</td>
<td>0.3883</td>
</tr>
<tr>
<td>15. 운송장비</td>
<td>0.5577</td>
<td>0.5437</td>
<td>0.6337</td>
</tr>
<tr>
<td>16. 기타제조업</td>
<td>0.4375</td>
<td>0.4565</td>
<td>0.4912</td>
</tr>
<tr>
<td>17~28. 기타</td>
<td>0.2869</td>
<td>0.2437</td>
<td>0.2373</td>
</tr>
<tr>
<td>합 계 (제조업합계)</td>
<td>0.4066</td>
<td>0.3911</td>
<td>0.3984</td>
</tr>
</tbody>
</table>

(단위 : %)

르면 간접적인 물가상승압력은 제조업의 경우 0.48~0.50%수준에서 유지되고 있으며 변화의 추세는 발견할 수 없다. 산업별 특성을 살펴보면 1차금속(10)과 금속제품(11) 산업의 경우 간접효과가 크게 나타나는데 이는 동 산업의 투입구조가 오염저감비용 저축비중이 높은 타 산업부문과의 연관성이 높기 때문이다.

총 물가효과는 직접적 효과보다 평균적으로 2배 이상 높은 수준을 보여준다. 환경규제를 많이 받는 것으로 알려진 섬유 및 가죽, 신발(4), 화학 및 고무(8), 비금속광물(9), 1차금속(10), 그리고 금속제품(11) 업종의 물가효과가 1.0% 이상의 높은 물가상승 압력을 나타내 일반적인 민음과 일치되는 결과를 보여준다.
반면 목재 및 종이(5), 인쇄(6), 석유 및 석탄(7), 그리고 정밀기기(14) 산업의
물가상승 효과는 0.5% 이하로 오염저감비용 지출로 인한 영향이 크지 않은 것
으로 나타났다.

총 물가상승 효과의 시간에 따른 변화는 직접효과와 비슷한 추세를 보여준다.
생산자물가의 영향은 1995년 0.84%에서 0.82%(1998년), 0.78%(2000년)로 낮
아져 시간의 흐름에 따라 산업의 가격구조 중 오염저감비용이 차지하는 비중이
낮아지고 있음을 보여준다. 경제발전에 따른 산업내부의 친환경적 구조조정, 기
술개발에 따른 고부가가치화 등이 이러한 추세에 기여하였을 것이다. 제조업분
야에 대한 효과는 1998년 기준 1.01%로 Kim and Kim (2002)의 1.9%보다 상
당히 낮은 결과를 보여준다. 이는 오염저감비용 추계에 있어 본 연구와 다른 산
업센서스(통계청) 자료를 이용한 것에 기인하는 것으로 판단된다. 산업별로는
석유 및 석탄(7), 전기전자(13), 그리고 정밀기기(14) 산업은 환경규제로 인한
물가상승 압력이 점차 줄어드는 것으로 나타났다. 반면 광산업(2), 금속제품(11)
의 경우, 오염저감비용으로 인한 부담이 점차 증가하여 물가에의 영향도 크게
나타난다. 그러나 그 증가속도는 직접효과보다 낮았다.

오염저감비용 지출로 인한 무역수지의 영향을 살펴보면 대부분 산업의 경
우 무역수지가 약화되는 방향으로 작용하고 있으나 그 절대적 크기는 미미한
것으로 나타났다. 무역수지가 약화되는 것은 오염저감비용 지출(즉, 환경규제의
강화)로 인한 가격상승으로서 산업의 가격경쟁력이 저하된 결과이다. 전체적으
로 무역수지 약화규모는 1995년 1조 491억 원에서 1998년 1조 1,057억 원, 다
시 2000년에는 1조 6,666억 원으로 증가하였다. 그러나 총 무역량에 대한 비율
은 1995년 0.46%, 1998년 0.30%, 그리고 2000년 0.36%로 소폭 감소하여 오염
저감비용 지출로 인한 무역에의 영향은 감소하고 있다. 이러한 규모는
Robinson (1988)에서 나타난 미국 1973년 수준인 교역량 대비 0.54% 수준에는
미치지 못하고 있다. 그 이유로는 우리나라 오염저감비용 지출수준이 미국의 그
것보다 낮거나(즉, 환경규제수준의 차이) 혹은 양국의 산업구조 차이로 볼 수
있다.5)
산업별 오염저감비용의 총 물가효과

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 농림수산업</td>
<td>0.6325</td>
<td>0.7110</td>
<td>0.6924</td>
</tr>
<tr>
<td>2. 광산업</td>
<td>0.4931</td>
<td>0.5080</td>
<td>0.5086</td>
</tr>
<tr>
<td>3. 음식료품, 담배</td>
<td>0.9164</td>
<td>0.9477</td>
<td>0.9459</td>
</tr>
<tr>
<td>4. 섬유 및 가죽, 선발</td>
<td>1.0173</td>
<td>0.9934</td>
<td>1.0395</td>
</tr>
<tr>
<td>5. 목재 및 종이</td>
<td>0.3854</td>
<td>0.4912</td>
<td>0.3910</td>
</tr>
<tr>
<td>6. 인 쇄</td>
<td>0.3099</td>
<td>0.3522</td>
<td>0.3424</td>
</tr>
<tr>
<td>7. 석유 및 석탄</td>
<td>0.8733</td>
<td>0.5496</td>
<td>0.3934</td>
</tr>
<tr>
<td>8. 화학 및 고무</td>
<td>1.5674</td>
<td>1.6551</td>
<td>1.7574</td>
</tr>
<tr>
<td>9. 비금속광물</td>
<td>1.0133</td>
<td>0.9547</td>
<td>0.9577</td>
</tr>
<tr>
<td>10. 1차금속</td>
<td>1.9906</td>
<td>1.8019</td>
<td>2.0796</td>
</tr>
<tr>
<td>11. 금속제품</td>
<td>0.9824</td>
<td>1.0059</td>
<td>1.1058</td>
</tr>
<tr>
<td>12. 일반기계</td>
<td>0.6384</td>
<td>0.5892</td>
<td>0.5987</td>
</tr>
<tr>
<td>13. 전기전자</td>
<td>0.7760</td>
<td>0.7731</td>
<td>0.5789</td>
</tr>
<tr>
<td>14. 정밀기기</td>
<td>0.4311</td>
<td>0.4260</td>
<td>0.4176</td>
</tr>
<tr>
<td>15. 운송장비</td>
<td>0.8921</td>
<td>0.9010</td>
<td>0.9191</td>
</tr>
<tr>
<td>16. 기타제조업</td>
<td>0.7392</td>
<td>0.7078</td>
<td>0.7188</td>
</tr>
<tr>
<td>17~28. 기타</td>
<td>0.5580</td>
<td>0.4917</td>
<td>0.4481</td>
</tr>
<tr>
<td>합 계</td>
<td>0.8417</td>
<td>0.8193</td>
<td>0.7814</td>
</tr>
<tr>
<td>(제조업합계)</td>
<td>(1.0160)</td>
<td>(1.0097)</td>
<td>(0.9731)</td>
</tr>
</tbody>
</table>

산업별 무역수지 영향은 1차금속(10)산업이 2000년 기준 -1.49%(3,677억 원)로 오염저감비용이 무역에 가장 큰 영향을 받고 있다. -0.50% 이상의 무역수지 악화효과를 보여주는 제조업(2000년)은 음식료품, 담배(3), 화학 및 고무(8), 비금속광물(9), 금속제품(11), 전기전자(13), 그리고 정밀기기(14)로 나타났다. 그 원인은 음식료품, 담배(3), 화학 및 고무(8), 1차 금속(10)산업의 경우 오염저감

5) 또 다른 가능성은 기본적인 자료의 한계를 생각해볼 수 있다. 산업생산 자료가 일정규모 이상의 기업만 포함하고 있으므로 자료에 포함되지 않은 부분을 포함할 경우 실제 오염비용 지출로 인한 효과는 제시한 수준보다 큰 수준일 것이다.
전 병 목

〈표 6〉 오염저감비용이 산업별 무역수지에 미치는 영향

(단위: %, (경상)십억 원)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>변화율</td>
<td>변화액</td>
<td>변화율</td>
</tr>
<tr>
<td>1</td>
<td>-0.44</td>
<td>-27.0</td>
<td>-0.45</td>
</tr>
<tr>
<td>2</td>
<td>-0.50</td>
<td>-62.8</td>
<td>-0.51</td>
</tr>
<tr>
<td>3</td>
<td>-0.77</td>
<td>-47.1</td>
<td>-0.71</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
<td>65.4</td>
<td>0.43</td>
</tr>
<tr>
<td>5</td>
<td>-0.48</td>
<td>-20.7</td>
<td>-0.44</td>
</tr>
<tr>
<td>6</td>
<td>-0.45</td>
<td>-2.6</td>
<td>-0.49</td>
</tr>
<tr>
<td>7</td>
<td>-0.59</td>
<td>-42.5</td>
<td>-0.23</td>
</tr>
<tr>
<td>8</td>
<td>-0.81</td>
<td>-176.3</td>
<td>-0.63</td>
</tr>
<tr>
<td>9</td>
<td>-0.77</td>
<td>-13.0</td>
<td>-0.42</td>
</tr>
<tr>
<td>10</td>
<td>-1.72</td>
<td>-277.1</td>
<td>-0.60</td>
</tr>
<tr>
<td>11</td>
<td>-0.54</td>
<td>-19.2</td>
<td>-0.52</td>
</tr>
<tr>
<td>12</td>
<td>-0.56</td>
<td>-110.7</td>
<td>-0.31</td>
</tr>
<tr>
<td>13</td>
<td>-0.56</td>
<td>-266.9</td>
<td>-0.65</td>
</tr>
<tr>
<td>14</td>
<td>-0.90</td>
<td>-53.2</td>
<td>-0.72</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>1.2</td>
<td>0.32</td>
</tr>
<tr>
<td>16</td>
<td>0.14</td>
<td>4.1</td>
<td>0.32</td>
</tr>
<tr>
<td>17–28</td>
<td>0.00</td>
<td>-0.9</td>
<td>0.00</td>
</tr>
<tr>
<td>합 계</td>
<td>-0.46</td>
<td>-1,049.1</td>
<td>-0.30</td>
</tr>
<tr>
<td>(제조업합계)</td>
<td>(-0.54)</td>
<td>(-958.5)</td>
<td>(-0.34)</td>
</tr>
</tbody>
</table>

주: 변화율은 무역규모에 대한 변화액의 비율임.

비용이 초래하는 높은 가격상승 압력이 무역수지 악화에 기여한 결과이며, 전기 전자(13), 정밀기기(14) 산업은 가격상승압력이 상대적으로 낮음에도 불구하고 시장의 경쟁 정도를 반영하는 수출입 탄성치가 높아 무역수지에의 영향이 크게 나타났다. 반면 섬유 및 가죽, 신발(4), 운송장비(15), 기타제조업(16)의 경우 오염저감비용 지출로 인한 가격상승 압력에도 불구하고 산업의 무역수지가 소폭 개선되는 것으로 나타났다. 이는 가격상승으로 인한 수출 감소와 수입 증가 효
환경오염 저감비용이 무역수지에 미치는 영향

(표 7) 산업별 무역수지 변화의 상대규모

<table>
<thead>
<tr>
<th>산업분류</th>
<th>무역수지변화/총산출</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.08</td>
</tr>
<tr>
<td>2</td>
<td>-1.93</td>
</tr>
<tr>
<td>3</td>
<td>-0.11</td>
</tr>
<tr>
<td>4</td>
<td>0.19</td>
</tr>
<tr>
<td>5</td>
<td>-0.16</td>
</tr>
<tr>
<td>6</td>
<td>-0.03</td>
</tr>
<tr>
<td>7</td>
<td>-0.23</td>
</tr>
<tr>
<td>8</td>
<td>-0.33</td>
</tr>
<tr>
<td>9</td>
<td>-0.08</td>
</tr>
<tr>
<td>10</td>
<td>-0.66</td>
</tr>
<tr>
<td>11</td>
<td>-0.12</td>
</tr>
<tr>
<td>12</td>
<td>-0.37</td>
</tr>
<tr>
<td>13</td>
<td>-0.40</td>
</tr>
<tr>
<td>14</td>
<td>-1.20</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>0.05</td>
</tr>
<tr>
<td>합계</td>
<td>-0.12</td>
</tr>
<tr>
<td>(제조업합계)</td>
<td>(-0.24)</td>
</tr>
</tbody>
</table>

그보다 가격상승효과가 크게 나타나기 때문이다.

한편 오염저감비용 지출의 동태적 효과는 각 산업별 변화율을 연도별로 살펴봄으로써 추측해 볼 수 있다. 이는 오염저감비용 지출이 산업의 경쟁력에 어떠한 영향을 미치는지에 대한 논쟁, 즉 포터 가설(Porter Hypothesis)의 성립여부에 대해 무역수지 변화율을 살펴봄으로써 간접적으로 검증해 볼 수 있는 방법이다. 분석대상 중 무역수지에 대한 영향이 음(-)에서 양 (+)으로 변화하는 산업은 없는 것으로 나타나 포터 가설을 동 기간에 대해 확인할 수는 없었다. 다
만 식유 및 석탄(7) 산업의 경우 무역수지에 대한 음(−)의 효과가 시간의 호름에 따라 감소하는 추세를 보여주고 있어 향후 분석기간을 확장할 경우 포터가설에 대한 유용한 시사점을 얻을 수도 있을 것이다.

무역수지 변화가 총 산출에서 차지하는 규모를 살펴보면 전체적으로 총 산출량 대비 0.12% 이하(제조업의 경우 0.24%) 수준에 머무르는 것으로 나타났다.

V. 결 론

연구결과에 따르면 환경규제로 인한 오염저감비용 지출이 야기하는 생산자물가에의 영향은 2000년 기준 0.78% (제조업의 경우 0.97%)로 1% 미만의 영향을 미치는 것으로 나타났다. 산업부문별 물가상승 압력은 환경규제를 많이 받는 것으로 알려진 섬유 및 가죽, 신발(4), 화학 및 고무(8), 비금속광물(9), 1차금속(10), 그리고 금속제품(11) 업종의 경우 1.0% 이상의 높은 수준을 나타내 일반적인 민음과 일치되는 결과를 보여준다. 반면 목재 및 종이(5), 인쇄(6), 석유 및 석탄(7), 그리고 정밀기기(14) 산업에의 물가상승 효과는 0.5% 이하로 오염저감비용 지출로 인한 영향이 크지 않은 것으로 나타났다.

무역수지에는 물가상승으로 인한 가격경쟁력 하락으로 부정적 영향이 존재하나 그 절대적 규모는 총 교역량에 비해 미미한 수준이다. 무역수지 악화 규모는 2000년 1조 6,666억 원으로 총 무역규모 대비 0.36%로 나타났다. 이러한 무역
환경오염 저감비용이 무역수지에 미치는 영향

수지에의 영향은 1995년의 1조 491억 원에 비해 규모면에서 크게 증가하였으나 무역규모에 대한 비중 0.46%보다는 크게 하락하였다. 즉, 환경규제로 인한 오염 저감비용의 지출이 전체무역에 미치는 영향은 1995년에 비해 감소한 것으로 판 단된다. 산업부문별 무역수지 효과는 1차금속(10)산업이 2000년 기준 -1.49% (3,677억 원)로 오염저감비용으로 인한 부정적 영향이 가장 크다. 이 외에도 -0.50% 이상의 무역수지 악화효과를 보여주는 제조업(2000년)은 음식료품, 담 배(3), 화학 및 고무(8), 비금속광물(9), 금속제품(11), 전기전자(13), 그리고 정 밀기기(14)로 나타났다. 그 외인 음식료품, 담배(3), 화학 및 고무(8), 1차 금 속(10)산업의 경우 오염저감비용이 초래하는 높은 가격상승 압력이 무역수지 악 화에 기여한 결과이며, 전기전자(13)와 정밀기기(14)산업은 가격상승압력이 상 대적으로 낮음에도 불구하고 시장의 경쟁 정도를 반영하는 수출입 탄력성이 높 아 무역수지에의 영향이 크게 나타났다.

오염저감비용 지출의 시간호흡에 따른 변화를 살펴보면 환경규제가 단기적으 로 무역에 음(-)의 효과를 보이다가 기술개발 등으로 인해 중장기적으로 양(+)의 효과를 보인다는 포터 가설(Porter Hypothesis)은 확인할 수 없었다. 다만 석유 및 석탄(7) 산업의 경우 무역수지에 대한 음(-)의 효과가 시간의 호흡에 따라 감소하는 추세를 보여주고 있어 향후 분석기간을 확장할 경우 포터 가설에 대한 유용한 시사점을 얻을 수도 있을 것이다.

이러한 분석결과는 오염저감비용 지출로 인한 효과가 모두 물가상승 압력으 로 작용한다는 가정 하에서 도출되었으므로 동 영향의 상한-supremum으로서 그 의미를 찾을 수 있다. 실제 산업부문의 수요요인, 경쟁요인 등으로 인해 비 용부담이 모두 가격에 반영되지 않을 경우 그 영향은 제시된 수치보다 낮게 나 타나게 된다.
전 병 목

 부록 수출입 탄성치 추정결과

우리나라 산업별 수출입탄성치 추정을 위해 다음과 같은 수출입항성을 구성할 수 있다.

\[
EX_i = g(\text{foreign GDP, PPI}_i, \text{foreign PPI}_i, \text{others}, \cdots)
\]

\[
IM_i = f(\text{NGDP, IIM}_i, \text{PPI}_i, \text{PPI}_i, \text{others}, \cdots)
\]

이러한 수출입항성에서 수출입방정식을 도출하였다. 기본모형은 로그선행함수로 구성하였으며 에러항의 자기상관 문제를 해결하기 위하여 Cochrane–Orcutt모형을 이용하였다.

산업별 수출은 기본적으로 소득효과를 나타내는 주요 수출국의 소득 (USGDP, JFGDP, CNGDP 등), 가격효과를 나타내는 국내 생산품의 가격 (PPI), 해외생산 생산품의 가격 등이 영향을 미친다. 그 외에 상품의 비가격 경쟁력이 큰 영향을 미치나 이를 잘 반영하는 변수 확보에 어려움이 있어 추정에서는 제외하였다. 석유 및 석탄 산업(7)의 수출항성에서는 우리나라 석유제품 수출 상당부분이 국내 정제량과 소비량의 차이를 해소하는 방식(중질유 중심)으로 이루어지는 현실을 고려하여 국내수요를 결정하는 변수로 국내총생산을 추가하였다.

한편 산업별 수입은 소득효과를 나타내는 우리나라 소득(NGDP), 가격효과를 나타내는 수입품의 가격(PIM), 국내 생산품의 가격(PPI), 대체재의 가격 (PPI)을 기본으로 기타 변수들(others)의 함수로 설명될 수 있다. 일반적으로 산업적 측면에서 대체재를 설정하기란 매우 어렵기 때문에 대체재에 대한 고려는 본 분석에서 제외하였다. 그리고 소득과 가격 외의 다른 변수에 대한 고려는 각 산업별 특성을 고려하여 설정하였다. 우리나라 산업의 특성 중 하나인 수출용 원자재의 수입영향을 고려하기 위하여 대외 수임의존도가 높은 1차금속(10), 전기전자(13), 정밀기기(14), 기타체조업(16) 부문의 수입결정요인으로 등 산업
환경오염 저감비용이 무역수지에 미치는 영향

의 수출을 포함하였다. 그리고 석유제품수입이 상당부분을 차지하고 있는 석유
및 석탄산업(7)의 수입을 설명하기 위해 국내 석유소비량을 설명변수로 이용하
였다. 이는 우리나라 석유소비구조가 경질유 중심으로 구성되어 있어 국내석유
수요가 증가함수록 경질유 수입수요가 증가하기 때문이다. 화학 및 고무산업(8)
의 경우 기본적인 소득, 가격변수의 도입에도 불구하고 예리한 자기상관문제
가 심각하여 AR(1)모형을 이용하였다.

<table>
<thead>
<tr>
<th>변수명</th>
<th>변수</th>
<th>변수명</th>
<th>변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI#</td>
<td># 산업의 생산자 물가</td>
<td>JPGDP</td>
<td>일본 GDP</td>
</tr>
<tr>
<td>PIM#</td>
<td># 산업의 수입 물가</td>
<td>CNGDP</td>
<td>중국 GDP</td>
</tr>
<tr>
<td>USGDP</td>
<td>미국 GDP</td>
<td>NGDP</td>
<td>한국 GDP</td>
</tr>
<tr>
<td>EX#R</td>
<td># 산업의 수출액</td>
<td>IM#R</td>
<td># 산업의 수입액</td>
</tr>
<tr>
<td>OILC</td>
<td>우리나라 석유소비량</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
전방 목

<표 2> 수출부문 (1981~2002)

<table>
<thead>
<tr>
<th>산업 부문</th>
<th>부분별 생산자율(%)</th>
<th>미국 GDP</th>
<th>일본 GDP</th>
<th>중국 GDP</th>
<th>한국 GDP</th>
<th>상수</th>
<th>adj- R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.26651 (-2.78805)</td>
<td>0.35484 (8.72369)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.753012</td>
</tr>
<tr>
<td>2</td>
<td>-0.40382 (-2.46057)</td>
<td>0.43584 (6.24374)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.937812</td>
</tr>
<tr>
<td>3</td>
<td>-0.28166 (-3.11594)</td>
<td>0.10405 (2.34445)</td>
<td></td>
<td></td>
<td>3.28578 (5.69825)</td>
<td></td>
<td>0.801692</td>
</tr>
<tr>
<td>4</td>
<td>-0.16209 (-2.41991)</td>
<td>0.36272 (13.18528)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.865352</td>
</tr>
<tr>
<td>5</td>
<td>-0.80144 (-5.10141)</td>
<td></td>
<td>0.33113 (3.94683)</td>
<td>0.35060 (4.25735)</td>
<td></td>
<td></td>
<td>0.850468</td>
</tr>
<tr>
<td>7</td>
<td>-0.71824 (-2.16610)</td>
<td>1.00812 (5.87405)</td>
<td></td>
<td></td>
<td>-0.57923 (-2.52658)</td>
<td></td>
<td>0.535005</td>
</tr>
<tr>
<td>8</td>
<td>-0.55260 (-5.96572)</td>
<td>0.52551 (13.80408)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.999959</td>
</tr>
<tr>
<td>9</td>
<td>-0.26480 (-2.05116)</td>
<td>0.36064 (6.79759)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.806388</td>
</tr>
<tr>
<td>10</td>
<td>-0.49958 (-6.64174)</td>
<td>0.50121 (16.53347)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.933475</td>
</tr>
<tr>
<td>12</td>
<td>-0.14765 (-2.03301)</td>
<td>0.94860 (12.74242)</td>
<td></td>
<td></td>
<td>-6.72477 (-6.82717)</td>
<td></td>
<td>0.987117</td>
</tr>
<tr>
<td>13</td>
<td>-0.76346 (-8.00719)</td>
<td>0.46792 (3.11570)</td>
<td></td>
<td></td>
<td>0.22235 (1.46519)</td>
<td></td>
<td>0.979141</td>
</tr>
<tr>
<td>14</td>
<td>-0.28006 (-5.74201)</td>
<td>0.32396 (8.59485)</td>
<td>0.09185 (2.23282)</td>
<td></td>
<td></td>
<td></td>
<td>0.967388</td>
</tr>
<tr>
<td>15</td>
<td>-0.24978 (-2.77756)</td>
<td></td>
<td></td>
<td></td>
<td>0.10105 (2.51145)</td>
<td></td>
<td>3.86471 (5.79093)</td>
</tr>
<tr>
<td>16</td>
<td>-0.05303 (-0.80774)</td>
<td>0.19364 (2.33131)</td>
<td></td>
<td>0.13339 (-2.12843)</td>
<td></td>
<td></td>
<td>1.99589 (4.48348)</td>
</tr>
<tr>
<td>합계</td>
<td>-0.18483 (-3.49540)</td>
<td>0.59695 (3.44927)</td>
<td></td>
<td>0.01861 (0.36060)</td>
<td></td>
<td></td>
<td>-3.56232369 (-2.04111)</td>
</tr>
</tbody>
</table>

환경오염 저감비용이 무역수지에 미치는 영향

〈부표 3〉 수입부분（1981~2002）

<table>
<thead>
<tr>
<th>사업</th>
<th>부문별 생산자물가</th>
<th>수입물가</th>
<th>한국 GDP</th>
<th>부문별 수출액</th>
<th>석유소비량</th>
<th>상수</th>
<th>adj- R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04411 (1.26744)</td>
<td>-0.45408 (-12.39721)</td>
<td>0.10454 (11.84280)</td>
<td>4.46133 (43.20803)</td>
<td>0.960792</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00126 (0.01175)</td>
<td>-0.74471 (-14.83253)</td>
<td>0.07615 (1.08039)</td>
<td>0.986911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.27125 (2.08621)</td>
<td>-0.54407 (-8.88358)</td>
<td>0.01750 (0.26520)</td>
<td>0.940882</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.05851 (1.31964)</td>
<td>-0.61319 (-11.22991)</td>
<td>0.12888 (9.02155)</td>
<td>4.91497 (29.59397)</td>
<td>0.934668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.26149 (3.79430)</td>
<td>-0.72656 (-19.23001)</td>
<td>0.12634 (6.46675)</td>
<td>4.39744 (27.68489)</td>
<td>0.957226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.10324 (2.59265)</td>
<td>-0.68920 (-18.02907)</td>
<td>0.24048 (20.85136)</td>
<td>3.18605 (15.99927)</td>
<td>0.993140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.22463 (2.23263)</td>
<td>-0.29103 (-1.94755)</td>
<td>0.22707 (6.31007)</td>
<td>0.839364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.21616 (1.92090)</td>
<td>-0.80141 (-6.67191)</td>
<td>0.22707 (6.31007)</td>
<td>3.87026 (9.00188)</td>
<td>0.959055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.46223 (4.80655)</td>
<td>-0.45878 (-4.25918)</td>
<td>0.09683 (3.97154)</td>
<td>0.76988 (14.49786)</td>
<td>0.926285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.17110 (2.51454)</td>
<td>-0.77835 (-7.31262)</td>
<td>0.22185 (11.49411)</td>
<td>4.52292 (18.32647)</td>
<td>0.961234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.57825 (4.72253)</td>
<td>-0.42890 (-3.65176)</td>
<td>-0.00703 (-0.13311)</td>
<td>0.79836 (11.39711)</td>
<td>0.984881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.70719 (15.01148)</td>
<td>-0.95755 (-11.8837)</td>
<td>0.09499 (2.64581)</td>
<td>1.13345 (15.66374)</td>
<td>0.899896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.17888 (1.47790)</td>
<td>-0.80034 (-2.67372)</td>
<td>0.1079754 (1.63108)</td>
<td>5.22793 (5.63230)</td>
<td>0.450746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.03900 (0.30210)</td>
<td>-0.62612 (-4.76298)</td>
<td>0.29358 (8.79671)</td>
<td>0.76626 (4.10571)</td>
<td>0.92441 (1.46779)</td>
<td>0.934361</td>
<td></td>
</tr>
<tr>
<td>합계</td>
<td>0.12186 (2.11939)</td>
<td>-0.43311 (-8.14281)</td>
<td>0.13242 (12.79561)</td>
<td>0.31825 (7.18808)</td>
<td>2.07648 (9.70502)</td>
<td>0.994600</td>
<td></td>
</tr>
</tbody>
</table>

주: 1) 산업 1은 1980~2002년 구간의 분석결과임.
 2) 산업 8은 AR(1)모형으로 구성되었으며 시차변수에 대한 계수는 1.08457(11.92454)임.
전 링목

◎ 참고 문헌 ◎

1. 한국은행, 산업연관표, 각 연도.
2. 한국산업은행, 설비투자계획조사, 각 연도.
3. Han, K. and J. B. Braden, Environmental and Trade: New Evidence from US Manufacturing, Research Paper, Department of Economics, University of Illinois, and Department of Agriculture and Consumer Economics, University of Illinois at Urbana Champaign, 1996.
Abstracts

환경오염 저감비용이 무역수지에 미치는 영향

전 병 목

본 논문은 환경오염저감비용이 무역수지에 미치는 영향에 대해 살펴보았다. 산업
연관표를 이용하여 각 산업별 오염저감비용 지출이 생산자들에 미치는 영향을 분
석하고 다시 이를 이용하여 산업별 수출입에의 영향을 도출하였다. 본 연구의 중요
한 기여는 이전의 연구에서 제외되었던 오염저감비용 지출의 간접효과를 명시적으로
고려해 좀으로써 분석의 정확도를 높였다는 점이다. 산업연관표를 이용한 분석에서
오염저감비용 지출이 미친 무역수지에의 영향은 총 교역량의 0.30~0.46%로 미국
의 1970년대 수준보다 낮았다.

주제어 : 환경오염저감비용, 무역, 산출분석, 물가영향, 무역수지
Abstracts

The Impact of Pollution Abatement Cost on Trade Balance

Byung Mok Jeon

This paper explores the impact of pollution abatement cost on trade balance. First, we derive price pressure of spending pollution abatement cost using I-O table. Then the analysis is extended to the impact on trade balance by manufacturing sectors. The paper explicitly includes indirect effect of pollution abatement cost that is the effect through the change of the other sector prices and excluded in the previous studies. The results show that the impact of pollution abatement cost on trade balance is $0.30 \sim 0.46\%$ of total trade volume of Korea. This is lower than that of the United States in 1970's.

Keywords: Pollution Abatement Cost, Input–Output Analysis, Price Effect, Trade Balance