Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalcheon Mine Area, Ulsan, Korea

Maeng-Eon Park1, Kyu-Youl Sung1, Minhee Lee1, Pyeong-Koo Lee2 and Min-Chul Kim3

1Department of Environmental Geosciences, Pukyong National University, Busan 608-737, Korea
2Department of Geological and Environmental Hazards, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea
3Korea Agricultural & Rural Infrastructure Corporation, Euiyang 437-703, Korea

The contamination of soils and groundwater in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to 2% in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite, cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Key words: arsenic contamination, natural attenuation, pH-Eh, RMB, Dalcheon mine

울산 달천광산의 지하수 및토양 중에 합유되어 있는 비소의 오염현황을 파악하고, pH와 산화-환원 전위 값의 변화에 따른 자연저감 능력을 평가하였다. 달천광산 지역 비소 오염의 주 근원물질인 유비철석의 폭이 내 함량은 최대 2%이며, 비독사석, 니올라이트, 핫חלק사이트, 저스도르파이트, 코발트석과 황철석 등의 비소함유물 역시 비소오염의 근원이 되고 있으며, 비소함유는 풍화물에 따라 다양한 차이를 보인다. 풍미경 내 비비철석과 황철석의 표면이 부문적으로 침식화물과 혈비산염으로 변화된 것을 관찰할 수 있어, 풍화반응이 상당히 진행되었음을 알 수 있다. 지하수 내 비소의 함량과 pH는 틀림없는 상관관계를 보이지 않지만, 토파다가 및 비토화역의 지하수의 비소 농도는 Eh가 감소함에 따라 높도가 감소하는 정(+)의 상관관계를 보인다. RMB(Red Mud Bauxite)는 비소제거 효율이 우수하여 달천광산 지역의 비소로 오염된 지하수 및토양을 복원시 자연저감 축전체로 이용될 수 있을 것이다.

주요어 : 비소오염, 자연저감, pH-Eh, RMB, 달천광산

1. 서 론

비소의 주요 자연 오염원로는 1) 황철석을 비롯한 대수층 내에 존재하는 비소를 함유한 황화물질, 산화 작용, 2) 대수층의 풍화에 흡착된 음이온의 비소와 인

*Corresponding author: geochemsky@hanmail.net
결정되기 때문에, 지구화학적 환경 변화에 따른 비소의 존재형태와 용해도를 정량적으로 파악하는 것은 매우 중요하다(Masscheleyn et al., 1991). 유비철속 등과 같이 비소를 함유한 화학물능부터 용출된 비소는 산화환경에서 철미산염의 형태로 쌓인, 유기물과의 착화합물을 형성, 또는 철, 알루미늄, 망간 등을 함유한 금속 산화물 또는 점토광물에 흡착되어 자연수로부터 계거된다(Smedley and Kinniburgh, 2002). 그러나, 산화물 또는 점토광물에 흡착된 비소는 환원환경에서 환원성 탈착현상 또는 환원성 용해반응에 의해 수제로 재용출될 수 있다(Smedley and Kinniburgh, 2002). 국내 일부 폐 금·은광산의 광미에서 철수산화물 또는 수산화황산에 공합된 비소는 극히 pH가 낮은 환경이나 알칼리 환경에서 직접적 용해현상이나 탈착현상으로 재용출될 수 있으며(안주성 등, 2003), 광미 내 비소의 이동도는 환원환경에서 철수산화물의 환원성 용해작용에 의해 증가될 수 있다고 연구되었다(Ko et al., 2003).

울산광역시에 소재하는 달천광산은 1943년 광산이 발견된 이후 1970년대 중반부터 본격적으로 자질석을 생산하였으며, 광산이 개발되는 기간동안 단속적으로 소량의 화장석과 유비철석이 재생되었다. 1980년부터 사문석 개발이 이루어졌으나, 80년대 후반 해방 이후 광산부지의 폐광석처리와 광미는 주변 토양과 자연수를 오염시키는 요인이 되고 있다. 광석과 광미 내 비소 등 유해한 중금속을 함유한 광물들은 가수분해 반응과 산화 반응에 의해 철수산화물 및 수산화황산염들을 생성하였으며, 광미 중의 환화 중금속의 농도비는 풍화작용에 의한 화학물질의 산화반응이 상당한 수준으로 진행되었음을 시사한다(농업기반공사, 2004).

이번 연구는 중금속으로 오염된 달천광산 지역에 대한 지질환경과 토양 및 자연수에 대한 오염원물질인 광석과 광미의 풍화작용 및 지구화학적 특성을 파악하였다. 또한, 연구지역의 자연수에 함유되어 있는 비소의 함량을 이용, 지구화학 모델링을 실시하여 pH 변화에 따른 비소 화합물의 농도 변화를 정량적으로 해석하였다. 연구지역 내 자연수의 pH와 산화-환전 전위 값의 변화에 따른 비소의 자연저감 능력을 평가하였으며, 비소의 고형 안정화 효율을 향상시키기 위한 촉진제로서 RMB(RED MUD Bauxite)의 효율을 평가하였다.

Fig. 1. Geological map (modified Choi and Imai, 1983) in the vicinity of the Dalcheon mine, Ulsan.
현재 울산 태안광산은 도시개발계획에 따라 아파트 부지로 지정되어 오염된 토양 및 지하수 복원사업이 진행 중에 있다. 이번 연구결과는 비소로 오염된 아파트 부지의 복원을 위한 복원공법 설계가 기초자료로 활용될 수 있을 것이다.

2. 지질환경

울산 태안광산 지역은 경상남도의 울산부로 분류된 피라미드, 화산암 및 후기에 이들을 관입한 사문암과 화강암으로 구성되어 있다(Fig. 1). 울산층은 녹회색 이암, 웅회암질 사암과 적색 및 회색 세밀한 호중으로 산출되며, 사문암과의 접촉부는 심하게 파쇄되어 있는 반면, 북쪽 화강암과는 접촉면이 호온화소화되어 있다. 총의 주향과 경사각이 각각 N10°E, 65°NW 이다. 화산암은 석영안암과 조면안암 및 안암면계의 화산암계로 구성되어 있다(박기화와 박희인, 1980; 김규한 등, 1990).

사문암체는 천장상의 모래인 석회암과 절하고 있는 북부암체와 남서방향에 떨어져 분포하는 남부암체로 구분된다. 사문암은 과성, 섬석암 및 가석상으로 구분되며, 과성의 사문암은 얽힘인 초임기성암이 난은 변질작용에 의해 사문석화된 암석을 지정하며, 변질작용의 영향이 커짐에 따라 다파암 또는 섬석상으로 바뀐다. 구성물질은 주로 갯리석, 단단석, 사문석, 가석석 및 차석석으로 구성되며, 붓상의 코로마암이 분화한다(Choi and Imai, 1983). 사문석은 고온성(CO2)에 의해 초임기성암의 암축변형을 받아 형성된 것으로 보고된 바 있다(김규한 등, 1993). 가석상 사문암은 다양한 크기의 사문석 가석을 함유하고 있으며, 가석의 사이에는 방석석, 석영 및 할로르사이트로 쩔어져 있다. 화강암은 북동방향의 구조선을 따라 판입상으로 분포하며, 흔히 화강암과 화강석독암으로 분류된다. 두 양석의 경계는 매우 점적이며, 화강석과 양석 사이에는 상당히 푸화되어 있다. 화강암은 주로 석영, 알카리장석, 사암석으로 구성되며, 흔히 모, 갯리석, 농식석 및 차석석 등을 함유하고 있다.

스카린 철광산은 사문암 내에 성인이 구체적으로 규명되어 있지 않은 적설질석화 및 포화석 내에서 산출된다. 함비소 화합물은 유비활물(sulfocaroxenide) 및 비염화물(arsenide)로서 나류이자(narcocite)가 먼저 침전된 후 람블메이거트(rammelsbergete)와 비토석석 등이 정화된다. 전기 광속도에서 산출되는 유비활물은 절과 텃스텐 스카린이 형성된 후인 다금속광화작용의 시기에 정화되며, Ni-Fe-Co에 유기물과 밀접하게 수반되어 산출된다. 후기 광속도의 유비활물은 국리 광속도와 밀접하게 수반되어 산출되며, 비소의 함유량은 전기보다 다소 낮다. 이들 유비활물은 광채뿐만 아니라 석회암 겹면에 질체 산화강으로 광반위계로 분포하며, 이는 스카린 광성 형성시 화합성 금속으로 이동되어 비소의 불합체들이 석회암의 미세한 균열을 따라 확산된 것으로 여겨진다.

연구지역은 양산단층, 울산단층 및 동대방단층의 연변부에 위치하며, 단층작용의 영향과 후기에의 관입 화성 활동으로 주의 구조특성들이 발달한다. 화강암은 울산단층 상부에 분포하는 석회암을 포함으로 형성되어 있으며, 화강암 분포 역시 단층발달에 규제되어 관절된 양상을 갖는다(Choi and Imai, 1983). 한편, 울산층은 화강암 관입의 영향으로 방사상의 변화가 형성되어 있다. 광물주변의 지질구조는 화강암체의 관절에 기반한 변형으로 나뉘는 단층이 형성되어 있으며, 각 암층의 경계부는 파쇄되어 있거나 푸화강도가 심하여 지표수와 지하수의 이동통로가 되고 있는 것으로 생각된다.

3. 연구방법

광미시료의 광물 및 화학성질을 파악하기 위하여 광미강 내의 세 개 지점을 선정하여 광미를 채취하였으며, 광미시료는 노두와 세척미세에서 채취하였다. 광미시료는 실내에서 자연건조시킨 후, 2 mm 이하 입도에 대해 분쇄하여 부정방주로 공급해 심층분석에서 X선화학분석(XPert-MPD System, Philips)과 X선 광섬유분석(XRF, 1700, Shimadzu)을 실시하였다. 또한, 광미의 광물성과 조직 특성을 파악하기 위해 염마취실형광 관찰과 광학기법을 함께 채비소 광물에 대한 EPMA (EPMA-1600, Shimadzu) 분석을 실시하였으며, 분석에 사용된 기준은 전류 15 kV와 전류 10 mA이다. 지하수 시료는 관측경과 고심도 시료 제취공정에서 채취하였으며, 시료의 채취는 스텐리스 제거의 배물에 사용하여 채취하거나, 섬도별 지하수 채취를 위하여 수성 수중모터를 이용하였다. 수온, pH, Eh, EC 등은 휴대용 측정기를 이용하여 지수측정 현장에서 측정하였다. 분석용 시료는 0.45 μm 마이크로필터를 이용하여 여과하였으며, 양은 분석용 시료는 농질산을 첨
가하였다. 모든 시료는 분석전까지 4°C 이하로 냉장 보관하였다.

비소의 존재 형태와 pH 변화에 따른 비소 화합물의 농도 변화를 파악하기 위하여 열역학 모델링 프로그램인 SOLVEQ (Reed, 1982)를 이용하였다. 다양한 조건 (온도, pH, 성분의 총합량 등)에서 기체 및 광물의 포화지수를 계산할 수 있는 프로그램 SOLVEQ는 수용액 상태가 존재하는 다중분계의 평형 계산을 위하여 사용되었다. 또한, 수용액 내에 존재하는 다양한 형태의 성 분종(species)과 복합체(complex)의 농도(molarity)와 활동도(activity)를 계산하였으며, 계산에 필요한 각 수 용액상의 성분과 기체 및 광물들의 평형상수는 SOLThERM 데이타 파일을 이용하였다.

비소의 고형 안정화 효율을 향상시키기 위한 촉진제로서 RMB(Red Mud Bauxite)의 효율을 평가하기 위하여, 현장토와 RMB의 혼합토를 이용하여 실험시험(지경 10cm, 높이 50cm)을 실시하였다. 최하부에 5cm 높이의 비오염 사질토를 채우고 작상부에 무작토를 깔았 으며, 상부에 5%의 RMB가 혼합된 현장토를 채우고, 다시 비오염 사질토를 최상부에 5cm를 더 채우고 실험하였다. RMB와 혼합한 현장토는 달천광산 지역 광 미장에서 채취한 세립토를 이용하였다. 점령 실험에 사 용한 초기용액은 달천광산 현장 관측장에서 채취한 비 소가 다양 함유된 pH가 8.21인 저화수를 직접 주입하 여 실험하였으며, 3시간, 9시간, 21시간, 45시간 및 114시간 간격으로 채취하여 중금속 분석을 실시하였다.

4. 결 과

4.1. 광석의 광물 및 화학 조성

달천광산에서 산출되는 주 광석광물은 자갈석, 화중 석, 유비질석이며, 소량의 황동석, 황철석, 자류질석, 성 아연석, 방연석 등이 산출되며, 비독사석, 코발트석, 거 스토르포이트(gersdorffite) 등의 함비소 광물들이 산출 된다(Choi and Imai, 1983), 함비소 화합물은 유비화 물(sulfosalt) 및 비염회물(arsenide)로서 니콜라이

Fig. 2. Photomicrograph of polished thin section showing the mode of occurrence of As-bearing minerals. Abbreviations are ASP: arsenopyrite, CAL: calcite, CB: cobalite, LG: loellingite, MT: magnette, NC: niccolite, and PY: pyrite.
트(niccolite)가 먼저 침전된 후 비동사석 등이 정재된 다(Fig. 2).

광미 내 유비철석의 함량은 최대 2%이며, 달천광산 지역 비소 오염의 주 근원공물이다. 비동사석, 나플라이트, 헬문스바이가이트, 거스도르프이트와 코발트석 등의 비소합금품 역시 비소오염의 근원이 되고 있으며, 비소 함량은 광물에 따라 다양한 차이를 보인다(Table 1). 전기에 침전된 유비철석은 광석 중에서 차지하는 비율은 상대적으로 높으나, 50.50〜51.14%의 높은 비소 함량 비를 가지며, 나플라트와 코발트의 함량도 각각 4.40〜10.04%와 0.86〜2.45%로 매우 높다. 한편, 얼수광맥 내에 수반된 유비철석은 가장 높은 비소 함량 비를 가지며, 광석 중에 조성함량이 높은 황철석은 1.84 wt.%의 비소를 함유하고 있다.

4.2. 광미의 광물 및 화학조성

광미의 구성광물들은 방해석, 석류석, 자석석 및 스카론 광물로 구성되어 있으며, 모신광량은 방해석(70%), 석류석(5%), 석류석을 제외한 유색 스카론 광물(20%), 자석석(4%), 유비철석, 황철석 순으로 구성되어 있다. 이들 광물 중 황철석은 대부분 2차 형성광물인 천산화 광물로 침전되어 산출되며, 유비철석의 표면부는 평활 작용에 의해 2차 광물로 침환되는 경향을 나타낸다. 임도벌 광미의 X-선 광학분석 결과, 사질 크기의 광미는 대부분이 방해석과 석류석이며, 실폷 및 점토질 크기의 광미는 방해석, 석류석 및 소량의 자석석과 각섬석으로 이루어져 있다. 광미의 임도벌 비소함량을 분석한 결과, 사질 크기는 1.05〜1.21 Wt.%의 비소가 함유되어 있으며, 실폷 및 점토질 크기는 1.75〜2.10 Wt.%로 임계값이 낮아 비소 함량이 높다(Table 2). 평활된 광미는 주로 유비철석의 산화작용에 의한 철과 비소의 산화광물인 스코라이트(scordite) 및 클라우데이트(claudeite) 등이 수반되며, 2차 기원의 비소를 비롯한 이 문서, 규소, 질산의 함량은 결함한진결과와 2차 침전광물의 결함도에 따라 달라진다(Fig. 3).

광미 내 유비철석과 황철석의 표면이 부분적으로 천산화물과 체질산염으로 산화된 것을 관찰할 수 있어,

<p>| Table 1. As-bearing minerals from the Dalcheon mine area, Ulsan (after Choi and Imai, 1983). |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Chemical composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenopyrite</td>
<td>FeAsS</td>
<td>42.20〜51.14</td>
</tr>
<tr>
<td>Niccolite</td>
<td>NiAs</td>
<td>52.0〜55.44</td>
</tr>
<tr>
<td>Rammelsbergite</td>
<td>NiAs2</td>
<td>66.22〜69.59</td>
</tr>
<tr>
<td>Loellingite</td>
<td>FeAs2</td>
<td>69.82〜71.18</td>
</tr>
<tr>
<td>Gersdorffite</td>
<td>NiAsS</td>
<td>45.71〜62.91</td>
</tr>
<tr>
<td>Cobaltite</td>
<td>CoAsS</td>
<td>44.21〜44.77</td>
</tr>
<tr>
<td>Pyrite</td>
<td>FeS2</td>
<td>0.98〜1.58</td>
</tr>
<tr>
<td>Scorodite</td>
<td>FeAsO4·2H2O</td>
<td>32.46%</td>
</tr>
<tr>
<td>Clauđette</td>
<td>As2O3</td>
<td>75.74%</td>
</tr>
</tbody>
</table>

<p>| Table 2. Chemical composition of tailings sampled from the Dalcheon mine. (unit in Wt.%) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Samp. No.</th>
<th>U-1-SC1)</th>
<th>U-2-SC</th>
<th>U-3-SC</th>
<th>U-1-SS2)</th>
<th>U-2-SS</th>
<th>U-3-SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>39.65</td>
<td>39.68</td>
<td>41.31</td>
<td>50.64</td>
<td>49.99</td>
<td>46.35</td>
</tr>
<tr>
<td>SiO2</td>
<td>28.83</td>
<td>28.87</td>
<td>26.92</td>
<td>22.18</td>
<td>22.15</td>
<td>25.98</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>19.02</td>
<td>19.64</td>
<td>19.77</td>
<td>16.15</td>
<td>17.25</td>
<td>16.91</td>
</tr>
<tr>
<td>MgO</td>
<td>4.61</td>
<td>4.52</td>
<td>4.61</td>
<td>4.37</td>
<td>3.98</td>
<td>4.13</td>
</tr>
<tr>
<td>Al2O3</td>
<td>2.72</td>
<td>2.53</td>
<td>2.39</td>
<td>2.92</td>
<td>2.67</td>
<td>2.56</td>
</tr>
<tr>
<td>As2O3</td>
<td>1.90</td>
<td>1.75</td>
<td>2.10</td>
<td>1.08</td>
<td>1.05</td>
<td>1.21</td>
</tr>
<tr>
<td>MnO</td>
<td>1.34</td>
<td>1.34</td>
<td>1.32</td>
<td>1.36</td>
<td>1.50</td>
<td>1.36</td>
</tr>
<tr>
<td>SO3</td>
<td>0.61</td>
<td>0.54</td>
<td>0.57</td>
<td>0.01</td>
<td>0.40</td>
<td>0.42</td>
</tr>
<tr>
<td>WO3</td>
<td>0.28</td>
<td>0.28</td>
<td>0.31</td>
<td>0.23</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>K2O</td>
<td>0.22</td>
<td>0.17</td>
<td>0.20</td>
<td>0.21</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.18</td>
<td>0.13</td>
<td>n.d.3)</td>
<td>0.18</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.17</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>PO4</td>
<td>0.15</td>
<td>0.17</td>
<td>0.14</td>
<td>0.07</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>CuO</td>
<td>0.13</td>
<td>0.13</td>
<td>0.15</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>CO2O3</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Total</td>
<td>99.87</td>
<td>100.00</td>
<td>100.03</td>
<td>99.71</td>
<td>99.89</td>
<td>99.90</td>
</tr>
</tbody>
</table>

1)SC: silt to clay size tailings; 2)SS: sand size tailings; 3)n.d.: not detected
Fig. 3. (A) SEM image of secondary mineral phase of weathered primary arsenopyrite from the Dalcheon mine. (B) Enlarged field of the surface that aggregates of Fe-As bearing oxides. (C) and (D) EDS analyses of As-bearing phases from the Dalcheon mine tailing. Analysis points are shown in (B).
4.3. pH-Eh 값의 변화와 비소 농도

울산 달천광산 지역 관측에서 산출되는 지하수의 pH는 6.16~8.69이며, 비소의 농도는 최대 57,000 ppb이다(농업기반공사, 2004). 달천광산 지역 지하수의 수질 특성은 용존산소, 황산염의 농도와 Eh 값이 크고, 질산염이 검출되는 호기성 환경을 보이는 것으로 보고되었다(음옥 등, 2004). 달천광산 지역 지하수의 비소 농도는 Eh가 높은 비포화대와 포화대 지하수의 경계 부에서 높은 경향을 나타내며, 지하수 수위가 관측시

기 동안 급격히 떨어져서 2차 측정시 지하수가 체류되지 않은 위치에서 비소농도가 크게 떨어진다. pH는 비포화 대에서 다양한 값을 보여주지만, Eh는 비교적 일정한 값을 보여주는 반면에, 포화대에서 pH와 Eh는 부(−)의 상관관계를 보인다(Fig. 5).
달천강산 지역의 다양한 조건을 고려하여 지하수의 pH 변화에 따른 비소화합물의 농도를 모델링(Reed, 1982)한 결과, 비소는 주로 H$_2$AsO$_3$-, AsO$_2$-, HAsO$_2$-, AsO$_4$$^{3-}$, HAsO$_4$$^{2-}$, AsO$_4$$^{3-}$로 존재한다. 알칼리 조건에서는 주로 H$_2AsO_3$-과 AsO$_2$- 이 우세한 이온으로 존재하며, 산성 조건에서는 AsO$_4$$^{3-}$가 우세한 이온중이다 (Fig. 7). HAsO$_3$-은 모든 pH 조건에서 가장 높은 농도로 존재한다. pH가 증가함에 따라 대부분의 이온중은 증가하는 양상을 보여주며, AsO$_4$$^{3-}$는 감소하여 다른 이온중들과 반대의 흐름특성을 보인다. HAsO$_2$는 pH 변화에 따른 뚜렷한 농도 변화는 관찰되지 않으나, 강 알칼리 조건에서 다소 감소하는 경향을 보인다.

5. 토 의

5.1. 비소의 화학적 거동과 pH-Eh 영향

달천강산 지역의 비소오염 근원물질은 함비소 황화물과 비산염광물로서 그 중 유비철석이 가장 주된 비소의 기원물질이다. 달천강산의 공량에는 대체적으로 1%의 유비철석이 함유되어 있으며, 산화작용에 의하여 비소의 용출이 주변의 탑양과 자연수를 오염시키는 것으로 나타난다(농업기반공사, 2004). 또한, 광석 중에서 조성함량이 높은 흙황석도 1.84 Wt.%의 비소를 함유하고 있어(Table 2), 달천강산 지역의 비소 오염원으로 작용하고 있다. 산화되지 않은 유비철석 내의 비소는 주로 +1가 상태로 존재하며, 산화에 의해 +1, +3 및 +5가 상태로 전환된다(Nesbitt et al., 1995; Pokrobski et al., 2002). 유비철석의 화학작용에 의한 환원속도는 일반적인 천공석 황화물보다 높으며, 화학환경에서 가장 주요한 산화반응은 다음과 같다.

\[
\text{FeAsS} + 7/2 \text{O}_2 + 4\text{H}_2\text{O} \\
\rightarrow \text{Fe(OH)}_3 + \text{AsO}_4^{3-} + \text{SO}_4^{2-} + 5\text{H}^+ \quad \text{(식 1)}
\]

\[
\text{FeAsS} + 13\text{Fe}^{3+} + 8\text{H}_2\text{O} \\
\rightarrow 14\text{Fe}^{2+} + \text{SO}_4^{2-} + 13\text{H}^+ + \text{H}_2\text{AsO}_4(\text{aq}) \quad \text{(식 2)}
\]

유비철석 등과 같이 비소를 함유한 황화광물의 용해로부터 유출된 비소는 산화환경에서 철 비산염과 같은 금속비산염형태로 침정되거나 점토광물이나 금속화물에 축적된 형태로 화학적으로 화합물 내에 존재하게 된다(Smedley and Kinniburgh, 2002). 비료장 내의 유비철석과 황철석의 표면이 부분적으로 청산화물과 철산염으로 화학적으로 산화된 것을 관찰할 수 있다. 유비철석으로부터 해리된 3가 철은 산성의 산화조건에서 용해된 비산
몇몇 비수와 반응하여 스코리다이트(FeAsO₄·2H₂O)를 청진시키며(Dove and Rimstidt, 1985), 매우 혼잡한 조건에서 비시산화물인 클라우디아이트(As₂O₃)가 형성될 수 있다. 달천산광에서 산출되는 대표적인 철비산염광물인 스코리다는 주로 유비석성의 산화반응 과정의 초기단계에서 철과 비소의 농도가 높고 pH가 낮을 때 생성된 것으로 판단된다. 상대적으로 안정하고 비용정렬로 갈리는 철비산염광물들은 페어밀 또는 페어밀을 용인 비소의 안정한 처분형태로 제시되어 있으나(Papassioi et al., 1996), 달천산광에서 산출되는 스코리다이트는 pH<1.5~1.8 캐산성 환경에서 용인 비산염 이온의 농도가 0.01 mole/L 이상인 조건에서 안정하며, pH가 2.4 이상인 조건에서는 용인 비산염 이온을 해리시키고 수산화물 또는 침대석을 형성시키는 비조해 용해반응(incongruent dissolution)을 일으킨다(Dove and Rimstidt, 1985; Kruse and Ettel, 1988). 따라서, 유비석성과 같은 함비소 화학량물의 산화반응 초기단계에 형성된 스코리다이트는 중성 내지 악기리 조건을 이루는 달천산광 지역 지하수 환경에서 비소를 재활용시킬 수 있다. 산화배우 또는 압밀질리성 지하수로 유입된 비소는 새로운 환경에 안정화된 철비산염 광물을 형성하거나, 이차로 침전된 침대석광물 또는 침대석광물에 흡착되어 그 농도가 감소하게 된다.

토양에서 비소의 용해도와 이동도는 수용액의 산화 상태 및 pH에 의해 결정된다. Eh=200~500 mV 범위의 산화조건에서는 As(V)가 주로 용인 이온으로, 환원조건(0~200 mV)에서는 As(III)가 주로 용인 이온으로 존재한다. 그러나, 녹슨 산화-환원생물 간의 변화 또는 미생물의 환원작용에 의해 비평형상태로 두 이온중이 공존하기도 한다(Masschelein et al., 1991). 달천산광 지역의 지하수는 초기 강도 Eh=500 mV에서 비조화대 지하수에서는 pH=7.4, Eh=200 mV로 전환하며, 포화대에서는 pH=9, Eh=300 mV에서 안정화되는 것으로 나타났다. pH-Eh 도표에서 비조화대 지하수의 비소는 침대석광물과 함께 비산염이온인 HAsO₄²⁻ 형태로 존재하며, 포화대지하수는 침대석광물과 함께 고온의 H₃AsO₃에 존재한다. 달천산광 지역 지하수들이 스코리다이트 영역에 정착되지 않은 것은 이들 지하수가 산화반응 초기단계에서 상당히 전환된 상태임을 의미한다.

5.2. 비소의 자연저감
일반적으로 밴드염 함량이 높은 광미는 높은 pH 환
충oling으로 인하여 산화성산염배수에 의한 비소오염을 억제하고, 울산 달천산광 지역 인근의 우물에서 확인된 비소오염은 밸런스있에 의해 상당적으로 많은 양의 비소가 용출될 수 있음을 시사한다. 이러한 결과는 토양 오염부위에 의한 지구화학적 조건(특히 Eh와 pH)의 변화의 고온의 침대석광물의 안정도에 영향을 줄으므로서 비소의 재활용 가능성을 지시하고 있다. 달천산광에서 산출된 지하수 중 pH=4.9인 산화배우와 밴드염에 의한 적정반응을 모델링(Reed, 1982)의 결과 지하수는 pH=9.0에서 완충되며, 이때의 산화배우와 밴드염에 의한 적정반응은 약 10만년간, 울산지역 연평균 강우량(1,200 mm/yr)을 감안할 때 비해석/의 피해 희
대 1이하로 설명할 수 있으며, 이러한 조건에서 토양에 형성되는 산화성산염배수는 pH=6 근처에서 완충된다. 철(수)산화물에 의한 비소의 제거는 다양한 pH 조건에서 공철 또는 밸런테에서 위해 발생하며, 빗물-달천산광 도말 반응에 이후 pH의 증가는 2차 철(수)산화물들의 침전을 가속화하여 자연저감 효과가 증대될 것으로 생각된다.

달천산광의 경우 유비석성을 비롯한 비소함유 광물들은 높은 산화전위 조건과 낮은 pH 조건에서 해리되며, 이 조건에서의 적정반응에서 pH가 산화배우에 따라 주로 As(V) 상태로 존재하게 된다. 반응으로 과정에서 비소 오염은 Eh=-100 mV 이하의 지하수 포화대에게 가장 낮았으며, pH가 상대적으로 낮고 비조화대의 높은 산화 조건에서 증가되는 경향을 나타낸다. 현재, 장기화와 같은 다양한 철산화물과 비산염을 포함하는 화학반응 정도가 높은 광미와 토양에서 비소농도가 높으나, 용출시험에 의한 농도가 비소 기준치 이하로 나타나는 실험결과는 화학반응과 토양에 의한 비소의 자연저감이 진행되고 있음을 시사한다.

비소의 고령 안정화 효율을 합성시키기 위한 새로운
로서 RMB의 효용을 평가하기 위한 실험시험이乐器으로 수행하는 RMB는 환경친화적이고 높은 정화효율 성을 지니며, 환경변화에 연속적으로 2차작용의 문제 점을 극복할 수 있는 물질로서 중금속 정화처리에 종 활용이 있는 데다. RMB의 중금속 인화효용은 이용 환경반응, 산화, 유기물, 유기반응, 중금속 수학 및 고정, 유기물의 산화 및 환원반응 등에 기인한 것으로 예측된다(Lombi et al., 2002). 특히, RMB는 비소제거 효율이 탁월하여 달천강산 지역의 비소로 오염된 지하수 및 도량 보전시 자연재생 촉진코드에 이용할 수 있도록 연구결과 보다 계계적인 실험결과 및 현장시험을 거친 후 활용을 검토할 필요가 있다.

5. 결론

비소로 오염된 은산 달천강산 광미의 자연재생 능력에 대한 pH와 환한천문 경위에 대한 연구 결과는 다음과 같다.

가. 달천광산에서 산출되는 룄 광석물은 자철석, 흑동석이며, 소량의 황동석, 황석질, 자철석, 석영석, 방석, 메달석 등이 산출되며, 유철석, 비석, 코발트석, 코발트, 스도로케이트 등의 함비소 광물들이 산출된다.

나. 광미는 방석제, 자철석, 흑석 및 석영석 등의 섬 채광광물로 구성되어 있으며, 광미 내 유철질석과 황석질의 표면이 부분적으로 청산화물과 청산염으로 산화된 것으로 관찰할 수 있어, 화학반응이 상당히 진행되음을 알 수 있다.

다. 달천광산 지역 비소 오염의 주 원인광물인 유비 철석의 광미 내 함량은 최대 2%이며, 비특석, 나롤라이트, 거스도르프아이트, 코발트석 및 코발트석 등의 비소 함량물 역시 비소오염의 근원이 되고 있다.

라. 지하수 내 비소 함량의 pH는 두려운 상관관계를 보이지 않지만, 풍화대 및 변모화대의 지하수의 비소 농도는 pH가 감소함에 따라 농도가 비례적으로 감소하는 정(+)의 상관관계를 보인다. 이러한 결과는 비소의 자연재생이 상당수 진행되고 있음을 의미한다.

마. pH-Eh 도표에서 달천광산 지역 지하수가 스코리아트 지역에 접목된 것은 이들 지하수가 산화반응 초기단계에서 상당히 청화된 상태임을 의미 한다.

바. RMB는 비소제거 효율이 우수하여 달천광산 지역의 비소로 오염된 저수 및 도량 보전시 이론환경, 산화계반응 및 흡착 등의 비소 고정화에 의한 자연재생 촉진코드에 이용될 수 있을 것이다.

사 사

본 연구는 한국자원재원연구원의 기본사업(연구 금속 평화대 권역별 중금속체계 전개평가 및 자연적경 화기계개발, KR-05(연도)-13-1)의 일환으로 수행되었습니. 본 논문의 심사과정에서 중요한 판단에 대하여 지식과 수용을 해 주신 한국자원재원연구원 전철민 박사님과 익명의 심사위원에게 심심한 사의를 표합니다.

참고문헌

Environmental Pollution, v. 118, p. 435-443.

2005년 8월 9일 훈고검수, 2005년 9월 8일 게재승인.