Enhancement of Coagulation and Flocculation Efficiencies by Ultrasonic Chemical Spray Nozzle I

Jin Kook Kim¹ · Soon Haing Cho · Dong Yun Ha · Jae Seok Koh* · Yong Hyun Kim* · Seung Chul Choi*

Division of Environmental, Civil, and Transportation Engineering, Ajou University
*Department of Materials Science and Engineering, Ajou University

ABSTRACT: To establish low-cost and high efficiency water treatment process, feasibility of applying ultrasonic spray nozzle for chemical injection was evaluated. Ultrasonic spray nozzle was manufactured using piezoelectric ceramics. Treatment efficiencies of contaminants by ultrasonic spray nozzle were compared with conventional chemical mixing such as back-mixing.

It was found that the rate of chemical diffusion rate by ultrasonic spray nozzle was faster than by back-mixing method. Removal efficiencies of various contaminants, such as turbidity, organics and microorganism by ultrasonic spray nozzle were also higher than by back-mixing method.

By adapting ultrasonic spray nozzle in coagulant injection process, it can be prevented that the decline of treatment efficiency by coagulant overdose. The amount of coagulant can be reduced by applying ultrasonic spray nozzle in water treatment. Along with these advantages chemical mixing chamber is not required if ultrasonic spray nozzle is adapted.

From these results, it can be concluded that chemical injection by ultrasonic spray nozzle is an economical and highly efficient device for coagulant mixing.

Key Words: Ultrasonic Chemical Spray Nozzle, Coagulation, Mixing Method, Treatment Efficiencies

요약: 국내 정수장의 약물공급을 항상시키는 저비용·효율이 있는 정수처리 공정을 확립하기 위한 목적으로 약물 분사용 초음파 분사 노즐의 적용가능성을 평가하였다. 초음파 분사노즐은 전자제품과의 조각으로 사용되며, 이 장치를 사용하여 수소 원수를 처리한 결과 현재 대부분의 정수장에서 사용되고 있는 기존의 약물 혼합장치에 의한 오염물질의 처리효율을 비교·평가하였다.

결과 정화방식에 따른 오염물질 제거효과는 초음파 노즐에 의한 정화방식이 기계식(back-mixing) 정화방식보다 오염물질의 제거효율이 높은 것으로 조사되었다. 오염물질별 제거효율 역시 기계식(back-mixing) 정화방식보다 초음파 노즐에 의한 정화방식의 제거효율이 높은 것으로 조사되어, 초음파 분사노즐을 이용한 약물 정화방식을 실제 정수처리 공정에 적용할 경우 오염물질의 퇴출 주입에 의한 처리효율의 저하를 방지할 수 있고, 수소 공정에 대한 부하를 줄일 수 있으며, 정수공장 사용되는 약물제를 점검시켜요, 오염이 적게 되어 이로 인한 경제적 효과를 빼면 아니라 보다 순수도가 높은 응용수를 생산 할 수 있을 것으로 기대된다.

주제어: 초음파 약물분사노즐, 응용, 환경방식, 처리효율

1. 서 론

인구의 증가에 따라 강과 호수의 자원적능력을 넘어서는 생활수수, 축산수수의 방류와 산업화로 인한 낭비성 유투 화물질의 배출로 인하여 상수원은 다양한 유해물질로 오염될 가능성이 높은 것이 현실이다. 1) 90년대 초부터 발생되기 시작한 폭염, 암모니아, 트라스페레신(TM5), 등에 의한 독성 물질 관리에 따른 사고로 인하여 응용수질의 개선을 위한 정수처리 기술 향상의 필요성이 대두되었고, 이후 수질의 각기 다른 개선을 위해서 고도 정수처리에 대한 연구가 시작되었다. 2) 그러나 대부분의 연구들은 원수에 함유된 오염물질의 제거에 주안점을 두었음에 비해, 응용수를 생산 하는 주 시설인 정수장의 처리효율을 개선시키고자 하는 목적이 연구는 그리 많지 않았다.

일반적으로 정수처리공정은 침사, 약물혼합, 응용, 이와 남도 등으로 구분된다. 약물 환경 공정은 원수에 존재하는 플로어드정 부유물질을 제거하는 가장 기본적인 처리공정으로 환경에 영향을 줄 수 있는 인자로는 원수의 PH, 알칼리도, 오염물질 농도 및 이온 등이 있으며, 이밖에 환경조 및 임펠러의 형상과 환경조에 가해지는 교반장도 및
2. 실험장치 및 방법

2.1. 초음파 약품분사노즐

2.1.1. 임전세척 제조

PZT(PhO, ZrO2, TiO2) 암전체는(4,6) 순도 99% 이상의 고 순도 의류 치약을 용액물질로 대하여 치약 용액을 임 전체와 혼합하였다. Tondial 태양의 암전 성분은 태양내장이 0.27, 0.324/0.09 등의 형태로 재조하기 위해 원료에 비인 다음 치료 후 2,000 N/cm²로 가압한 후, 1,250℃에서 1분당 4℃로 온도를 증가시켜야 5시간 동안 소결하였다. 연마기(Speed FAM 456-L, U.S.A)를 사용하여 두께로 4 mm로 상./하면을 권장한 후 스카일 안성법으로 Ag 전극을 시험된 암전에 도포한 후 5.5 kV/mm의 점유 전압으로 120℃, 30분간 분산 처리하였다.

2.1.2. 분사 노즐 설계 및 제작

초음파로 인해 일정 조건의 주파수영역인 16~20 kHz 범위의 상한치인 20 kHz 이상의 주파수를 갖는 음파이다. 초음파는 암전효과(Piezoelectric effect)를 이용하여 석영과 같은 암전성 물질의 한 양면에 크기가 같은 방향이 반대인 전하를 교대로 집중하여 그 물질이 수축과 평평을 반복하게 하여 전기매니저를 기계에너지로부터 변화시키고 그로 인해 소리가 발생되도록 하여 발생시킨다.7)

노즐의 제작은 비교적 높은 주파수 영역인 40 kHz에서 고유진동수를 얻기 위해 금속 외경을 0.27로 가공하였으며, 세라믹 및 유리 가공을 위한 이용 0.27로 맞춰 세라믹 금형 제작하였다. 본사 약품은 노즐의 원형부 부분으로 도입되어 내부를 통과하는 오리파스(Orifice)로 공급되며, 약품의 분사효율을 높이기 위해 외각을 강착하여 암전체를 통한 노즐의 유출부 부분의 노즐 tip에서 약품을 분사시키는 노즐에 고전압 인가시 암전체 측면을 통한 누설전류를 차단하기 위해 노즐 전동자 조립 후, tondial 암전체 외각을 실리콘을 사용하여 실링하였다. Fig. 1은 고유진동수 40 kHz의 초음파 노즐의 모식도와 사진이다.

2.2. 연속식 실험장치

실액에 사용된 연속식 실험장치는 경기도에 위치한 K 정수장의 제 1 정수장을 기준으로 상수도 시설기준에 준하여 환경, 응집, 청정기로 구성하여 제작하였다. 장치의 재료는 acryl을 사용하였고, 환경자의 외부시간은 1m, 유효용량은 3.0 x 10³ m³로 제작하였다. 응집기의 제비시간은 30분, 유효용량은 0.0293 m³이고, 청정기의 외부시간은 3 hr, 유효용량은 0.54 m³이다. Fig. 2는 연속식 실험장치의 사진이다.
2.3. 실험방법
초음과 약품 분사장치의 개발을 위하여 압전체의 물성실험을 수행하였고, 수중의 초음과 방출 및 무방선 시 분사효율을 관찰하였다. 초음과 약품분사장치에 의한 혼합방식별로 혼합지역의 음직임 혼합특성과 음직임 주요성 변화에 따른 처리효율을 조사하였다. 실험 방법은 다음과 같다.

2.3.1. 압전체 물성실험
시품의 압전 특성은 Institute of Radio Engineers Standard (1957)에 근거하여 Low Frequency Impedance Analyzer (HP4194A)를 이용하여 압전상수(d33), 전기 기계 결합계수(kp), 전기저항(Zr), 유전 손실(Loss tan)을 측정하였다. 세라믹과 노즐의 음직임과 신호는 광학용계(RI-AHOT, Chino)로 측정하였으며, 미세구조의 관찰은 주사 전자현미경(S-2700, Hitachi)을 사용하여 관찰하였다.

2.2.2. 초음과 발전 및 무방선 시 분사효율
아크릴 수중에 압전체를 장착하여 페키지된 초음과 분사 노즐을 수중 장착부에 위치 100 mm의 수중 중앙에 설치하였고, 약품에 간격을 입력값을 사용하여 분사하여 수중에 초음과 약품분사기의 특성을 이용해 무방선 시 초음과 발전 시 분사효율을 평가하였다. 그리고 노즐의 장방선 방향 초음과 전통 표준의 피로현상과 신뢰성을 관찰하기 위하여 대기중에서 초음과 약품분사 시 세라믹과 노즐의 운동변화를 측정하였다.

2.2.3. 혼합방식에 따른 혼합지역 음직임 혼합특성
기계식(back-mixing) 혼합방식으로 채용된 초음과 노즐에 의한 혼합 방식에 의하여 음직임과 원수 중이 효과적으로 혼합되며 여러 초음과 노즐의 분사효과, 계기계의 유체 속도와 음직임을 조사하였다. 이를 기계식 혼합지역에서의 압력에너지의 계산에 이용하였다.

기계식(back-mixing) 혼합방식에 대한 AWWA(American Water Work Association)의 설계 기준을 비교한 300 ~ 1,000 sec⁻¹, 계류시간 10 ~ 60초로 계산하였는데, 국내 정수장의 교반강도는 300 ~ 350 sec⁻¹범위로 설정하고 있다. 이는 근교로 본 실험에서는 bench 규모의 혼합장에서 기계식(back-mixing) 혼합 방식의 초음과 노즐의 운동을 측정시간 간 1 min, 교반강도 300 sec⁻¹로 설정하여 실험이었다.

Table 1. Velocity gradient(G) and input power(P)

<table>
<thead>
<tr>
<th>Velocity gradient(G)</th>
<th>Input Power(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G = velocity gradient, sec⁻¹</td>
<td>P = C₀ρ∆A/V²</td>
</tr>
<tr>
<td>P = power input, N · m · sec</td>
<td>ρ = density of fluid, kg/m³</td>
</tr>
<tr>
<td>V = volum of reactor, m³</td>
<td>υ = 0.75 × blade speed, m/sec</td>
</tr>
</tbody>
</table>

J. of KSEE / Vol. 27, No. 1, January, 2005

3. 결과 및 고찰
3.1. 압전특성
Table 3에 PZT(PbO, ZrO₂, TiO₂) 압전체의 각 물성치를 나타내었다. 압전 상수인 d33가 높고, 발전기에서 인가된 출력을 초음과 노즐의 기계적 및 전기도의 수지에 따라 기기를 치기 광범위한 계수, kp가 높은 조성을 선택하였다.

Table 2. Analytical methods

<table>
<thead>
<tr>
<th>Classification</th>
<th>Analytical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>nephelometric method</td>
</tr>
<tr>
<td>Particle size</td>
<td>electrical sensing zone method</td>
</tr>
<tr>
<td>Organic matters</td>
<td>UV spectrophotometer (8452A, Hewlett Packard)</td>
</tr>
<tr>
<td>Micro-organisms</td>
<td>Persulfate-UV spectroscopy method</td>
</tr>
</tbody>
</table>

Table 3. Electronic properties of PZT

<table>
<thead>
<tr>
<th>Fr(KHz)</th>
<th>Zr(X)</th>
<th>Fa(KHz)</th>
<th>C(pF)</th>
<th>Qm</th>
<th>d33 (10⁻¹²m/V)</th>
<th>Kp(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.23</td>
<td>18.56</td>
<td>66.06</td>
<td>378</td>
<td>1465</td>
<td>351</td>
<td>58.05</td>
</tr>
</tbody>
</table>
3.2. 초음파 발진 및 무 발진시 분산효율
세라믹 노즐을 외장 펌프 없이 발진할 경우 주파수가 40 kHz부근으로 유지되었으나, 수중 실험을 위해 초음파 노즐 외부를 펌프형의 경우 5% 정도 공진주파수가 낮은 것으로 이동하였다.

Fig. 3은 세라믹 노즐을 펌프형으로 수중에서 약품분산시 초음파 발진과 무발진 분산을 비교한 사건이다. Fig. 3(a)는 초음파를 발전시키지 않은 상태에서 약품을 액체 와프의 압력에 의해 분산시킨 결과로 분산액이 거의 퍼지지 않고 직선방향으로 분산되는 것으로 관찰되었다. 분사액은 액체 분산 액체에 의해서만 수중에서 확산이 진행되어 직선 방향으로 약 50 cm 정도 진행하지만 바닥에 가라앉은 후 서서히 떨어져 들이 전체로 확산되어 각을 관찰할 수 있었다. Fig. 3(b)는 초음파 발진분산 시킨 결과로 무발진 분산한 경우와 비교했을 때 액체 와프 압력과 초음파 노즐에서 발생되는 중 진동 즉, 초음파 노즐 tip 부근의 수직방향의 진동 에너지가 수중으로 확산되어 수중에서의 분산액의 확산이 월등히 뚜렷한 것을 관찰되었다. 초음파를 적용하여 분산시 노즐 tip 부근에서 분산액 입자가 미세하게 변하여 수중에서 3차원적으로 고전 확산이 진행된다.
결과적으로 초음파 발진 분산시 액품의 분산 속도가 현저히 빠르고 악품이 미세하게 분산됨을 관찰할 수 있었다.

Fig. 4는 대기중과 수중에서 초음파 발진 액체분산시 세라믹과 노즐의 연도변화를 비교한 결과이다. 대기중이나 수중에서 모두 동일한 시간이 경과한 후에 연도가 안정화되었으며, 대기중에서 분산하는 경우보다 수중에서 분산할 경우, 세라믹과 노즐의 연도가 더 높은 연도로 안정화되었다. 실제의 적용시 수중에서 초음파 액체 분산할 경우 초음파 진동에 의한 피로현상이 없는 신뢰성 있는 발전 상태가 관찰되었다. 따라서 수중에서 분산하는 경우 압력계의 자단 명각이 이루어져 장시간의 발전에도 문제가 없이 신뢰성이 향상되는 것으로 결론 짐을 수 있었다.

3.3. 혼합방식에 따른 혼합지대 응집체 혼합특성
Fig. 5는 장면협경을 이용하여 응집체를 혼합하여 주입시 기계식(back-mixing)혼합방식과 초음파노즐에 의한 혼합방식의 혼합특성을 분석한 결과이다. 응집체(Poly Aluminium Chloride)의 주입농도는 26.0 mg/L이었으며, 혼합지의 체류 시간은 1분이었다. 실험결과 기계식(back-mixing)혼합방법의 경우 혼합지 체류시간 1분이 경과 후 혼합지 유출수 중의 AI 농도는 22.2 mg/L이었으며, 초음파 노즐에 의한 혼합방식은 25.0 mg/L로 주입된 응집체 농도와 거의 유사하게 나타났다. 60초가 지난 후에도 초음파 혼합방법의 AI의 농도는 변화가 없는 반면에 기계식 혼합방법의 AI의 농도는
Fig. 5. Change of aluminium concentration by various chemical injection method.

Fig. 6. Turbidity removal efficiency by various coagulant dosages.

Fig. 7. Particle size distribution by mixing methods.

15 mg/L에서 각각 87.2%와 92.1%로, 20 mg/L에서 66%와 91.8%로, 25 mg/L에서 33.6%와 79.1%로, 30 mg/L에서 11%와 32.3%로 초음파 노출을 이용한 혼합방식이 기계식 (back-mixing) 방식보다 퇴도 제거율이 높은 것으로 조사되었다. 임계 용액추출원에서의 기계식(back-mixing) 혼합 방식보다 초음파 노출을 이용한 혼합방식의 퇴도 제거율의 차이는 미미하였으나, 임계 용액추출원 증가함수록 기계식 (back-mixing) 혼합방식 보다 초음파 노출을 이용한 혼합방식이 21.3 45.5% 정도 더 안정적인 퇴도 제거율을 보이는 것으로 조사되었다.

Fig. 7은 임계 용액추출원 변화에 따라 혼합방식별로 처리 수에 존재하는 임자의 크기 분포를 나타낸 결과이다. 원수 에서의 임자들은 20 180 μm 범위에 걸쳐 분포하는 것으로 조사되었으며, 주로 60 120 μm 범위의 임자가 대부분이므로 조사되었다. 기계식(back-mixing) 혼합방식으로 처리한 경우 처리수에 존재하는 임자들은 0 80 μm 범위에 걸쳐 분포하는 것으로 이중 60 μm 크기를 갖는 임자에 49.0%로 가장 많이 존재하는 것으로 조사되었다.

초음파 노출을 이용한 혼합방식의 경우 처리수에 존재하는 임자들은 10 60 μm 범위에 걸쳐 분포하는 것으로 조사되었으며, 이중 40 μm 크기의 임자가 78.3%를 차지하는 것으로 나타나 초음파 노출을 이용한 혼합방식이 기계식 (back-mixing) 혼합방식에 비해 상대적으로 처리수에 존재하는 임자의 크기가 작은 것으로 조사되었다. 이는 초음파 노출에 의한 혼합방식은 응집제가 수증에 미세한 액체로 분산되어 기계식(back-mixing) 혼합방식 보다 응집제가 혼합지대로 혼합될 수 있기 때문에 수증에 존재하는 퇴도 유발물질과도 더 효과적으로 반응하므로써 응집효율이 증가된 것으로 판단한다.

2) 유기물(UV254, TOC, DOC)

Fig. 8은 응집제 용량추출원에 따른 UV254, TOC, DOC의 제거 효율을 나타낸 결과이다. UV254 응집제수는 수증에 존재하는 유기물, 특히 고분자인 분산물(humic substance)의 농도를 나타내는 것으로 기계식(back-mixing) 혼합 방식과 초음파 노출 혼합 방식의 UV254 제거율은 응
압체 주입량 15 mg/L에서 각각 74.6%와 79.3%로, 20 mg/L에서 67.8%와 78.5%로, 25 mg/L에서 25.2%와 49.89%로, 30 mg/L에서 14.4%와 23.0%로 초음파 노즐을 이용한 혼합방식이 기계식(back-mixing) 방식보다 UV_254 제거율이 높은 것으로 조사되었다.

기계식(back-mixing) 혼합방식과 초음파 노즐을 이용한 혼합방식의 TOC의 제거효율은景点에 주입량 15 mg/L에서 각각 59.8%와 63.7%로, 20 mg/L에서 46.9%와 62.2%로, 25 mg/L에서 40.9%와 58.9%로, 30 mg/L에서 18.1%와 40.2%로 초음파 노즐을 이용한 혼합방식이 기계식(back-mixing) 방식보다 TOC 제거율이 높은 것으로 조사되었다.

DOC의 제거율은 응진계 주입량 15 mg/L에서 각각 77.3%와 83.8%로, 20 mg/L에서 47.7%와 77.1%로, 25 mg/L에서 35.5%와 59.1%로, 30 mg/L에서 9.6%와 28.5%로 초음파 노즐을 이용한 혼합방식이 기계식(back-mixing) 방식보다 DOC 제거율이 우수한 것으로 조사되었다.

응진계 주입량이 증가하여도 초음파 노즐 혼합방식이 기계식(back-mixing) 혼합방식보다 안정적인 제거효율을 나타내었다. 이는응진계를 주입하는 과정에서 수증기에 초음파가 조사되면 음이 가수분해를 H⁺와 OH⁻로 분해되며 이때 생성된 OH⁻는 응진계(AI⁺)와 반응하여 Al(OH)₃를 형성하게 되므로 (1,13) 수증에 H⁺가 증가하여 표면 응진기가 강인하여 응진성 유기물질의 안정화를 방지하기 때문에 (3,14) 응진에 의한 유기물 제거 효과가 증가하기 때문인 것으로 해석된다. 또한 초음파가 수증에 조사될 때 생성되는 OH⁻ 라디칼에 의한 유기물의 산화효과 (5) 응진 - 청정 공정의 효율이 향상되었음을 것으로 판단된다.

3) 미생물(일반세균, 대장균)

Fig. 9은 응진계 주입량 변화에 따른 혼합방식별 일반 세균과 미생물의 제거효율을 나타낸 결과이다.

![Fig. 8. Organic removal efficiency by various coagulant dosage.](image)

![Fig. 9. Microorganism removal efficiency by various coagulant dosage.](image)
사 사
본 연구는 2002년도 한국환경기술진흥원에서 시행한 차세대 해상환경기술개발 실용화·상용화 기술 사업을 (주)준전자통신의 자원으로 수행되었으며, 이에 감사 드립니다.

참고문헌