Sludge Thickening using Electro-Flotation in Water Treatment Plant

Lee, Jun1 · Han, Mooyoung2 · Dockko, Seok3 · Park, Yonghyo4 · Kim, Tschungil2 · Kim, Makyung2,*

1 금호전자미어링
2 서울대학교 지구환경시스템 공학부
3 단국대학교 도목환경공학부
4 한국수자원공사

(2004년 11월 4일 논문 접수; 2005년 3월 17일 최종 수정논문 채택)

Abstract

Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation (DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process, because of high total solids and low moisture content in the sludge.

Key words: Gravity thickening, Electro-flotation thickening, Interface height, Total solids, Effluent turbidity

주제어: 경사관, 저류벽, 유효정류벽, 추적자실험, Morrill 지수, Modal 지수, 단락류 지수

*Corresponding author Tel: +82-2-880-7375, FAX: +82-2-880-7376, E-mail: mkkim@waterfirst.snu.ac.kr (Kim, M.K.)
1. 서 론

정수처리는 크게 수질을 생산적으로 하기 위한 수처리 공정과 이 과정에서 발생되는 배출수 처리 공정으로 구분할 수 있다. 대부분의 정수처리에서는 두 종류의 배출수가 발생하는데, 하나는 침전저지에서 배출되는 정청 슬러지이고, 다른 하나는 역세척 과정에서 발생하는 역세척 슬러지이다. 이들 슬러지의 양은 원수의 특성, 용접개수, 정수공정의 성능, 침전지의 효율과 슬러지 배출방법, 그리고 역세척 방도 등에 의해 결정된다. 또한, 배출수 처리는 농축, 탄수소, 소화, 배출공정으로 나눌 수 있고, 이 중 농축공정의 목적은 후속공정에서 슬러지를 처리효율을 향상시키는데 있다. 농축공정에서 슬러지의 제거율이 높이면 후속공정의 용량을 감소시켜 처리시간과 경제성을 향상시킬 수 있다.

현재까지의 농축공정으로는 주력 청강식 농축이 대부분의 경우가 사용되어 왔다. 주력 청강식 농축의 경우 시설과 운전이 간단하지만, 24~48시간 정도의 간처리시간을 필요로 하며, 농축효율을 향상시키기 위해 폐기물을 사용해야 한다(환경부, 1997). 또한, BulkIng 현상이 나타날 경우 슬러지가 혼합하게 되는 문제점에 대한 대안이 없으며, 농축슬러지의 총 고형물 농도가 1~2% 정도밖에 되지 않아 대량의 탄수조를 필요로 한다. 이러한 문제점을 해결하기 위해 도입된 방법이 부상식 농축공정인데 현재까지는 용존공기부상법(DAF: Dissolved air flotation)이 주로 이용되어 왔다. 이러한 용존공기부상법을 이용한 슬러지 농축은 슬러지와 기포가 충돌하여 수면으로 부상되어 농축시키므로써 BulkIng에 대한 문제가 없으며, 농축슬러지의 총 고형물 농도가 2~3%로 주력 청강식에 비해 고효율의 농축이 가능하다. 하지만, 용존공기부상법의 경우 기포발생을 위해 가압탱크, 순환펌프와 같은 추가적인 설비가 필요하고, 높은 압력 을 유지하기 위한 동력비가 소요된다. 이에 반해 전해부상법(EE: Electro-flotation)은 기포발생을 위해 금속극판과 전극간을 필요로 하기 때문에 설비가 간단하고, 동력비가 적게 소요된다. 또한 용존공기부상법과 전해부상법에서 운전조건에 따른 기포의 크기를 측정하여 본 결과, 전해부상에서도 스테인레스 극판을 사용할 경우 용존공기부상법과 비슷한 크기의 기포가 발생된다는 것을 알 수 있었다(Han et al., 2002a; Han et al., 2002b). 즉, 용존공기부상법보다 간단한 설비와 적절한 운전기로 동일한 효과를 나타낼 수 있을 것으로 판단된다. 따라서, 본 연구의 목적은 슬러지 농축에 있어서 주력 청강식과 전환부상식 농축을 적응하여 각각의 농축 방법에 따른 계산 농축된 슬러지의 총 고형물 농도 그리고 농축 후 배출수의 간류타크를 측정함으로써 기존의 저역력식과 전환부상에 의한 농축 방법을 비교 분석하고자 한다.

2. 실험 방법

2.1. 실험 재료 본 연구에서 사용된 슬러지는 경기도 소재의 M 정수장에서 첨전 슬러지와 역세척 슬러지를 저장하고 있는 조성조로부터 농축조로 유입되는 슬러지를 측정하여 사용하였다. 슬러지의 초기 고형 물 농도는 0.05~2.55%의 범위에서 0.5%씩 증가된 농도를 사용하였으며, pH는 6.62~7.26이었다. 또한, 1.55%, 2.05%, 2.55% 농도의 슬러지는 농축을 위한 고분자 응집제로 플리크릴아미드계 응집제(모델명 : K320A)를 사용하였다.

2.2. 실험 장치

본 연구에 사용된 농축조의 반응조는 Fig. 1과 같이 직경 6cm, 높이 50cm의 1회형 야크릴 회분식 반응 조를 제작하여 실험을 실시하였으며, 실험에 사용된 조건은 Table 1과 2에서 보여주고 있다. 주력 청강식 농축장치는 체류시간을 2~120분간 변화시켜 실험을 실시하였고, 전환부상에서 사용하는 극판은 단일이 강한 스테인레스를 양극으로 사용하여 실험을 실시하였다. 전환부상에서 사용하는 극판의 음극은 알루미늄이나 스테인레스를 사용하나 적절한 크기의 기포발생을 위해 스테인레스를 사용하였으며 (Han et al., 2002c). 3 x 5 x 0.05cm³ 크기의 극판 3개

<table>
<thead>
<tr>
<th>Table 1. Experimental condition of gravity thickening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge sample</td>
</tr>
<tr>
<td>Initial total solids (%)</td>
</tr>
<tr>
<td>HRT(min)</td>
</tr>
</tbody>
</table>

156
Table 2. Experimental condition of EF thickening

<table>
<thead>
<tr>
<th>Sludge sample</th>
<th>Sludge from S. WTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Current (mA)</td>
<td>300</td>
</tr>
<tr>
<td>Initial total solids (%)</td>
<td>0.05-2.25</td>
</tr>
<tr>
<td>(with increment of 0.5)</td>
<td></td>
</tr>
<tr>
<td>Reaction time (min)</td>
<td>2-10</td>
</tr>
<tr>
<td>(with increment of 2)</td>
<td></td>
</tr>
<tr>
<td>Generated total Bubbles volume conc. (ml/ml)</td>
<td>6.90-34.52</td>
</tr>
</tbody>
</table>

Table 3. Bubble volume concentration depending on reaction time in EF

<table>
<thead>
<tr>
<th>Reaction time in EF (min)</th>
<th>2.5</th>
<th>4.5</th>
<th>7.0</th>
<th>9.5</th>
<th>12.0</th>
<th>14.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble volume concentration (ml/ml)</td>
<td>8.19</td>
<td>16.38</td>
<td>24.57</td>
<td>32.76</td>
<td>40.95</td>
<td>49.14</td>
</tr>
</tbody>
</table>

3. 실험 결과

각 농축 방법의 농축 특성 비교 시 중력침강식 농축과 전해부상식 농축은 초기 고형률 농도에 대해 시간에 따른 격판 높이, 총고형률 농도 그리고 배출수의 친류력도 비교가 가능하다. 즉, 시간에 대한 함수로 비교가 가능하다. 그러나 용존공기부상식 농축의 경우 시간에 대한 함수가 아닌 기포발생량에 대한 함수이며 중력침강식 농축과의 비교보다는 전해부상식 농축과의 비교가 가능하다. 따라서, 전해부상법에 서 기포발생 시간에 따른 기포발생량을 측정하였다 (Table 3).

3.1. 격판의 높이 비교

0.05-2.55%의 슬러지에 대해 중력침강식 농축과 전해부상식 농축의 격판 높이를 측정시간 및 반응시간에 따라 비교해 본 결과 Fig. 2와 같다.
초기 고형물 농도와 관계없이 종력 침강식 농축의 경우 슬러지의 기면 형성을 120분 정도의 긴 체류시간에 걸쳐 일어나지만, 전해부상식 농축에서 슬러지의 기면 형성을 8~10분 사이에 완료되고, 안정화 단계로 접어들음을 볼 수 있다. 종력 침강식 농축은 오랜 체류시간이 경과해야 슬러지의 기면이 안정화 단계로 접어들음을 비해 전해부상식 농축은 기면 형성에 있어서 약10분 전후로 매우 짧은 시간 안에 완료될을 알 수 있다. 한편, 슬러지의 초기 고형물 농도가 높아 고분자용제를 사용하였을 경우, 전해부상식 농축에서는 기포발생이 끝나 10분에서의 기면 높이가 증가하였으나 종력 침강식 농축에서는 체류시간이 120분 정도 경과하여도 기면 높이의 증가가 거의 일어나지 않았다.

3.2. 종고형물 농도 비교

종력 침강식 농축과 전해부상식 농축의 종고형물 농도를 비교한 결과는 Fig. 3과 같다.

전해부상식 농축은 종력 침강식 농축에 비해 모든 초기 고형물 농도에서 높은 시간 내에 높은 종고형물 농도를 갖는 슬러지를 얻을 수 있었고, 슬러지의 초기 고형물 농도가 0.05% 낮을 경우 초기 고형물 농도보다 약30배 정도 더 높은 농도의 농축 슬러지를 만들 수 있었다. 또한 처리시간을 지속시키면 약 3일 간, 그로프에 나타난 이후부터는 큰 변화가 나타나지 않았다.

한편, 슬러지의 초기 고형물 농도가 높아 고분자용제를 사용하였을 경우, 기면 높이 변화 결과와 마찬가지로 고분자용제의 종력 침강식 농축에 좀 더
유리하게 작용한다. Fig. 4(b)로부터 중력 침강식 농축의 경우 초기 농도에서 120분 경과한 후 최종 농도로의 증가율이 고분자응집제를 사용하지 않았을 때에 비교 크다. 그러나 전해부상식 농축은 고분자응집제를 사용하여도 초기 농도에서 범위 침강식의 고형률 농도의 증가율이 크지 않다. 앞의 계면 높이 결과에서와 같이, 전해부상식 농축은 중력 침강식 농축에 비해 고분자응집제의 영향을 덜 받는 것으로 생각된다. 또한, 계면 높이 결과에서 8~10분 정도 경과하면 습기 층의 높이 변화가 거의 없어 총고형률 농도도 안정됨 것으로 판단하였으나, 10분에 이르기까지 농도가 증가하는 결과를 얻었다. 이 측정값은 습기의 계면 높이가 변하지 않은 상태에서 변하였는데, 이는 습기가 농축이 완료된 후에도 농축 습기 내부의 수분이 중력에 의해 하부로 빠져나가는 때문인 것으로 판단된다. 실험 본 연구에서도 10분 뒤에 기포발생을 증가하고, 2시간 전처리 후 습기의 총고형률 농도를 측정해 본 결과 총고형률 농도값은 약 3.5%까지 증가하는 것을 확인할 수 있었다. 따라서 전해부상식 농축조 운전에 있어서 수리학적 부하율뿐만 아니라 고형률의 절대효과를 고려하여 운전하면 보다 높은 고형률 농도의 습기가 농축하는 것이 가능할 것으로 판단된다. 또한, 중력 침강식 농축과 비교해 볼 때 빠른 시간에 고농도의 습기가 농축할 수 있었다. 침강식의 경우 습기가 물 속에서 농축시키기 때문에 고형률 농도를 증가시키는 데는 한계가 있을 수밖에 없었다. 하지만, 부상식의 경우 습기가 물면 위로 부상시키고 농축을 시키기 때문에 침강식보다는 고농도의 습기가 농축하는 것이 가능하다.

3.3. 배출수의 잔류탁도 비교
 중력 침강식 농축과 전해부상식 농축을 총액시간 및 반응시간에 따른 배출수의 잔류탁도를 Fig. 4와 같이 비교한 결과, 계면 높이 변화와 농축된 습기가 총고형률 농도의 결과의 차이가 크지 않으며, 배출수의 잔류탁도 또한 전해부상식 농축의 경우 약 10분 이내에 매우 약한 수질의 배출수가 생산되며, 반응시간을 지속시켜 주었을 때도 이상 낮아지지 않았다. 습기의 초기 고형률 농도가 0.5~1.5%일 경우, 중력 침강식 농축은 120분이 경과하여도 10NTU 내외의 높은 잔류탁도를 보이고 있으나, 전해부상식 농축은 10분 이내에 2~3NTU 정도의 낮은 잔류탁도를 나타내고 있다. 배출수 수질기준에 관련된 추가적인 항목에 대한 연구도 필요하고, 단순적으로 농축 후에 농축 농도가 배출수 수질을 매우 양호하다. 또한 습기의 초기 고형률 농도가 0.5~1.5%로 낮을 경우 고분자응집제를 사용하지 않고 운전하기 때문에 농축수는 하전에 방류하지 않고 수용정으로 회수할 수 있는 가능성 또한 기대된다.

한편, 습기가 초기 고형률 농도가 1.55~2.55%로 높은 경우 전해부상식 농축의 배출수 잔류탁도는 3~5NTU 정도로 매우 양호하다. 또한 중력 침강식 농축의 경우 초기 고형률 농도가 1.55~2.55%로 높아 고분자응집제를 사용할 경우, 120분이 경과하였을 때 그 잔류탁도는 6~7NTU 내외로 초기 고형률 농도가 낮을 때 보다 더 양호한 잔류탁도를 나타내었다.
다. 증력 침강식 농축의 경우 고분자용접제의 영향을 크게 받는다는 것을 알 수 있다.

4. 결 론

본 연구에서는 정수장에서 발생되는 상수 슬러지 를 처리하는 방법으로 증력 침강식과 전해부상식 농 축을 사용하여 0.05~2.55%의 초기 고형물 농도를 갖는 슬러지에 대해 농축 실험을 실시하였다. 두 가지 농축 방법에 대한 농축 효율 및 특성을 비교하기 위해, 슬러지의 초기 고형물 농도에 따른 계면 높이, 농축된 슬러지의 총고형물 농도 그리고 배출수의 전류탁도를 측정하였다. 결과에 따른 세부적인 결론은 다음과 같다.

1) 각 농축방법에서 계면의 높이를 비교해 볼 때, 증력식 농축은 오랜시간에 경화되며 안정화 단계의 계면을 형성하는 반면, 전해부상식 농축의 경우는 8~10분 사이에 안정된 계면을 형성하였다.

2) 총고형물의 농도 역시 전해부상식 농축은 초기 저농도 슬러지의 경우 농축 이후 배우 높은 농도의 총고형물 농도를 보였으며, 초기 고농도 슬러지의 경우 역시 증력식 농축에 비해 짧은 시간에 높은 농도로 농축되었다. 또한, 부상되며 농축된 슬러지는 점차 공기의 밀도가 높아지면서 총고형물의 농도가 더욱 증가하는 양상을 보였다.

3) 배출수의 전류탁도는 이전 결과와 마찬가지로 6~10NTU의 상대적으로 높은 탁도를 보이는 증력식 농축에 비해 짧은 시간 내에 2~5NTU의 낮은 탁도의 배출수를 생산해 내었다.

4) 또한, 측정된 계면높이, 총고형물 농도, 전류탁 도의 실험을 통해 초기 총고형물 농도가 높은 슬러지 에 고분자용접제를 사용하였을 경우, 전해부상식 농 축은 증력식 농축에 비해 크게 영향을 받지 않은 것 을 알 수 있었다.

위 결론으로 미루어 볼 때, 기존의 증력식 슬러지 농축에 비해 전해부상에 의한 농축이 짧은 시간 내에 더 높은 효율을 보임을 알 수 있었다. 일반적인 상수 슬러지의 초기 고형물 농도가 1% 미만인 점을 감안 할 때 전해부상식 농축은 효율이 매우 높음을 알 수 있다. 그러나 하천수와 같이 무기성 고형물이 다량 포함하고, 특히 우수기의 경우 슬러지의 농도는 높아져 배출수 농도가 3~4%를 상회하게 된다. 이차한 경우 증력 침강식이 더 좋은 대안이 될 수 있다. 따라서 이러한 단점을 보완하고 개발할 경우, 수리적 부하율 증가시켜 설계용량을 감소시킬 수 있다. 또한 후속공정인 탈수공정에 있어서도 효율이 낮으 며, 총고형물을 높은 슬러지를 처리하는데 따른 바람 및 시설이 감소할 것으로 판단된다.

참고문헌

Han, M.Y. and Park, Y.H. (2002b), Size characteristics of micro-bubbles according to applied voltage and electrode materials, J. of KSIW., 16(6), pp. 663-339.
Huisman, L. (EE009/86/1), Sedimentation and flotation, IHEE(Netherlands).