1. 머릿말

현대건축에 있어 구조의 공부한 능력은 더 이상 놀람만한 일이 아니고 이제는 보다 다양한 역할을 기대하게 된다. 고대로부터 필수불가결하게 건축의 구성요소로 사용되어 오던 벽돌, 콘크리트, 철강 등 강성을에 이어 이제는 막이나 케이블 등 연성재까지 영역을 넓혀 구조가 창출해 내는 공간과 형태의 영역은 폭넓은 것이 되었다. 특히, 단일케이블의 여리 경량구조외에도, 막재나 케이블넷과의 연합구조가 이루어 내는 아름다운 자연 그 자체의 형상에 따르는 것으로 건축전면으로 나타나는 효과가 매우 두드러진다.

특히 이들 연성구조물을 이용한 건축디자인들은 기술적인 뒷받침이 되어 가고자하되는데, 그럼기 때문에 건축형태 및 공간의 아름다움과 구조기술을 접목시키는 과정은 기술에 바탕을 두고 이루어지는 창의적인 사고들로 인해 가능해져 왔다. 그중 케이블넷의 주목하고자 하는데, 이 구조방식은 1950년대부터 현대인장구조의 출발점에서부터 발전해온 방식이고 현재까지도 다양한 가능성을 가지고 사용되고 있다.

케이블넷구조의 디자인 과정을 고려하자면 Frei Otto로 시작된 슈투르가르트에서의 일련의 작업을 연급하지 않을 수가 없는데, 본 고에서는 건축근대사에서 구조디자인의 철두에 서있었고 수많은 건축가들에게 새로운 기술을 이용한 디자인을 꾸준한 방법론을 Frei Otto의 케이블넷 디자인 실험과정을 소개하고, 그의 슈투르가르트 대학 연구소를 중심으로 지금까지 이루어져고 있는 구조디자인의 세계를 살펴보고자 한다.

일본의 구조디자이너인 일본대 사이토 마사오(柴藤公男)교수는 "슈투르가르트는 자신의 성지와 같은 곳이다"라고 말한 바 있다. 그만큼 슈투르가르트에서는 건축을 새롭게 하는 구조기술의 발전이 지속적으로 이루어져 왔고, 도시곳곳에 이를 이용한 실험적인 구조물들이 서있기도 하다. 그림 1에서와 같이 여리 연성구조시스템을 이용한 다양한 형태의 구조물들이 지역건축의 성격을 말해준다.

그중 몇가지 예를 소개하면 그림 1-a)의 Bridge Rosenstein II (영어니어: Leonhardt, Andra and Partner)는 슈투르가르트 외곽 은천지역에서 도로와 철로 위를 건너가는 보도교로 한쪽은 현수곡천을 이
푸는 케이블 보스템이고, 이어지는 다른 다리는 현수교를 사용하여 주위환경과 잘 어울리고 있다. Bridge over Neckarstrasse(엔지니어: Schlaich, Bergermann and Partner, 그림 1-c)는 도심내의 호텔의 입구와 녹지공원을 연결하는 보도교로 인장케이블의 아름다움을 이용하여 공원과 연결함과 동시에 호텔을 부각시키고 있는 예이다. Pedestrian Bridge over Neckar river(그림 1-d)는 슈투가르트의 중심적인 녹지공간인 Nectar강변에 있는 현수 보도교이다. 중요한 시민공원이자, 자연의 아름다움을 부각시키는데 중요한 역할을 하고 있다. Bridge at Löwentor(엔지니어: Schlaich, Bergermann and Partner, 그림 1-e)는 Löwentor공원 주위에 있는 다양한 교량중 하나인데, 케이블네트를 이용하여 보도교를 구성한 홍미로운 사례 중 하나이다.

이러한 구조물의 배경에는 독일 전체에서 주요 역할을 하고 있는 골지의 엔지니어링 회사들이 슈투가르트에 본거지를 두고 있을 뿐만 아니라, 기술을 구조미에 적극적으로 결합하고자 한 슈투가르트 공과대학의 여러 연구자들과 건축가들의 역할에 힘입은 바 크다. 이 대학에서는 구조의 디자인적 역할에 대하여 새로운 시각을 개시한 Curt Siegel 교수를 시작으로, 막구조와 케이블네트구조의 실험적 실현으로 명성을 얻은 IL(Institute for Lightweight Structures, 그림 1-b)연구소의 Frei Otto 교수, 그리고 기술적 발전을 가속화한 Jörg Schlaich 교수와 최근의 Werner Sobek 교수에 이르기까지 지속적인 연구 및 작품 활동을 보이고 있다.

케이블네트구조에 있어서도 이 지역 건축 활동의 영향이 지대하다고 하겠는데, 건축과 구조가 연관성을 고려하며 케이블네트구조를 적용시켜온 구체적인 발전과정을 역사적으로 살펴보고자 한다.

2. 케이블네트구조의 패턴

Frei Otto는 자연에서 물리적 형의 범칙에 의해 분출되어 나오는 형태적 아름다움을 구조에 의한 건축의 가장 큰 아름다움으로 생각하고 자연적인 구조물을 추구하였다곤 한다. 특히 미국의 롤리 박람회장(Raleigh Arena)의 케이블 구조를 보고 깊은 감명을 받아 연성구조의 연구를 시작한 이후 수많은 모델링 작업을 통해 구조의 자연스러운 형태를
II. 연구소의 외부 전경과 내부

한나의 내부기둥에서 양쪽으로 주 케이블을 걸고 그 케이블에 다시 각각 케이블을 걸어 외곽기둥부터 케이블에 정착시킨 후, 그 외곽케이블을 여러점에서 막기 위해서로 정착시켰다.

내부에는 물방울모양의 개구부를 두어 진공을 빼어내어 문모양을 형성하였다.

(a) 케이블넷의 폭선과 접합상세도상
(b) 주 케이블의 내부모습과 외부정착기초부분 상세

〈그림 2〉 슈투트가르트 대학의 Frei Otto 연구소 (Institute for Lightweight Structures, 1965)
찾았고, 그 결과의 일반으로 1950년대 현대적인 현수막구조를 세계에 알림으로써 큰 명성을 얻었다.

이후 1967년 몬트리올 박람회 독일관은 막구조의 아름다움을 케이블네트라는 보다 새로운 재료로 표현한 혁신적 건축이었다. 대공간건축의 구조능력은 가진 이 새로운 건축구법을 가능하게 한 것은 새로운 재료를 이용하여 건축의 형태와 공간을 끌어내고자 하는 끝임없는 F. Otto 교수의 발상과 모델작업을 통한 기술적 연구였다.

실제로 슈투트가르트 대학에서 지금도 전환함을 과시하고 있는 IL(Institute for Lightweight Structures) 연구소는 케이블네트의 살아있는 모델이다. 이 연구소는 67 몬트리올 박람회 독일관에 사용할 케이블네트구조의 시공법과 그 타당성을 검증하기 위하여 1965년에 세워졌다. (그림 2) 슈투트가르트는 겨울에 매우 많은 적설량을 보일 때도 있고 바람도 적지 않은 곳이지만 외부환경에도 불구하고 유지되어 연성계인 케이블네트구조의 구조기능을 증명하여 보였다. 이후 1993년 리노베이션을 거쳐 현재까지 슈투트가르트 대학 ILEK(Institute for Lightweight Structures and Conceptual Design)의 연구실로 사용되고 있다.

이 연구소에는 실제로 대화형함과 하이어, 비누, 막, 고무막 등 다양한 재료를 이용하여 건축의 형태와 공간을 이루는 구조에 대하여 연구해온 과정이 살아있다. (그림 3 참조) 이와 같은 실험적 시도를 바탕으로 대형공간을 가진 몬트리올 독일관이 연구소 건물과 유사한 방식으로 지어졌다.

〈그림 4〉 몬트리올 박람회 독일관

연성계의 새로운 건축형태와 구조방식은 모든 이들의 이목을 집중시켰고 경량연성구조를 대중 앞에 널리 전달한 대형공간 건축으로 기억되고 있다. 연구소 건물에서는 하나의 고점을 가지는 방식이었던 것에서 보다 변화를 주어 여러 고점을 설치하고, 아래로 잡아당기는 3개의 지점을 설치하였다. 연구소에서 사용하였던 것처럼 고정 상부부분에 폴
방울모양(eye loops)개구부를 설치하여 내부의 공
간효과를 높였다. 네트의 외부는 케이블에 정착되
고 외곽케이블이 자유롭게 여러 지점에서 내부에
정착되었다.(그림 4 참조)

3. 뮌헨 올림픽경기장으로의 진입

ロンディ를 용량확장의 성공 이후 케이블넷은 비
약적으로 발전하여 멀렌 올림픽스타디움으로 펼쳐
진다. 롱디를 용량확장보다 네트의 간격은 50cm
에서 75cm로 커졌고, 전의 마감은 아크릴판으로 마
감되어 투명함으로 극대화된 공간감을 제공하였다.

이 프로젝트는 처음 설계기간에서 당선되었을 때
메인스타디움과 수영장, 외부공간까지 미치고 있는 케
이블넷구조의 양질난 면적이 여러 기술적인 문제
로 인해 많은 우려가 있었다던 것으로 알려져 있다.

그리드에도 불구하고 이 구조물이 설립된 것은 세
계의 이목이 집중되는 올림픽 경기장으로서의 상징
성과 새로운 구조형태를 보여주고자 하는 혁신적인
도전의식이 기본이 되었을 것이다. 이 경기장의 특
명한 지붕은 주는 개방감과 활기로운 올림픽은
물론 이후 현재까지 의심할 바 없이 기념비적인 멀
헨시민의 문화공간으로 자리매김하고 있다.

뮌헨 올림픽 경기장은 Frei Otto와 건축가 Behnisch
& Partners, 엔지니어 Leonhardt 등이 참가하여 설
계하였다. 공간비용과 기능에 관계한 건축설계위에
케이블넷 지붕을 설치하여 자유로운 형태의 공간
을 설계하였다.

이 설계의 가장 주안점이 되는 케이블넷 지붕
설계과정은 연설계를 이용하는 초기과정인 만큼 수
많은 모델작업을 통해 이루어진 것임을 알 수 있다.
그 설계흐름도는 그림 5과 같다.

가장 첫 번째는 비누막 필름모델을 이용하여 연
설계가 가지모던 최소곡면에 의한 자유로운 형상
탈색하였다. 이 모델작업은 어떠한 외부하중도 고
려할 수 없는 모델작업이기 때문에 최종 작품과 거
리가 있기는 하지만 설계에서 가정한 주위조건과
지점 등을 반영할 경우, 최소곡면을 통한 인장재의
형태를 찾을 수 있게 해준다.

두 번째는 난은 플라스테르 필름을 이용한
1/200스케일의 잠재모델을 사용하였다.(그림 6) 이

拘楼.han. 10

(그림 5) 뮌헨 올림픽 경기장의 모델링과정 흐름도 (1)

(그림 6) 뮌헨 올림픽 경기장의 인장심유모델
모델을 통해 지점을 이루는 기초와 기둥의 개수 및 위치를 결정하고, 이와 더불어 사용가능한 공간을 협의수정하고 결정하는 과정을 거쳤다고 한다. 이
러한 설투를 이용하는 모델은 현재까지도 건축가들
이 조기 형태와 공간을 결정하는 시기에 자주 사용
하고 있는 기법이기도 하다. 비교적 재료가 사용하
g기 용이하고, 가격이 저렴하며, 그 위에 원하는 형
태와 케이블의 모음을 그리거나, 잘라내기 용이하
며 수정 또한 얼마든지 가능하기 때문이다. 그러하면
서도 실제 구조물의 거동과 많이 유사하기 때문에
이것에서는 설투로 된 모델에 그린 그림을 투영시켜
크기를 측정하고 그것을 이용하여 실제 구조물을
제작하는 방법을 사용하기도 하였다.
원형 경기장의 경우는 이 모델을 이용하여 경기장
기능에 알맞은 내부공간의 높이와 용이한 배수, 균일
한 지붕폭선을 가능하게 하는 형태를 찾고 수정하였
다. 또한 포괄적인 해석연구의 기초자료로 제공되기
도 하였으며 종합시험을 수행하기도 하였다.
이후 결정된 내용을 이용하여 보다 정밀한 스프
링 와이어 모델을 제작하였다.(그림 7) 이것은 두
가지 유형으로 제작되었는데, 한가지는 “측정용”모
델이고, 후에 “패턴”모델을 제작하였다. 이같은 상
세한 모델작업을 위해 수학적 예비해석이 이루어져
제작에 필요한 와이어의 길이와 모델의 크기를 결
정하였다.
패턴모델은 스테인러 지붕의 케이블길이와 평면
되는 부분의 크기를 비교적 상세히 접작하기 위해
여 1/10, 1/20스케일로 제작되었다. 측정용모델은
1/125스케일로 수학적 해석의 기초자료를 제공하

<그림 7> 원형 올림픽 경기장의 와이어모델(위)
원형 올림픽 경기장의 케이블네트 지붕모습(아래)

<그림 8> 원형 올림픽 경기장의 모델링과정 흐름도 (2)
기 위하여 제작되었다. 이 모델에는 실제구조에서 일어날 수 있는 변형과 응력상태 등을 측정하기 위해 스트레인 게이지를 부착하고 다양한 하중시험을 수행하였다.

이같은 모델작업은 건축가가 의도하는 형태와 공간이 구조적 특성을 따라야 할 때, 수치해석작업으로 구조체를 기술적으로 다루기보다 앞서, 기술적으로 가능하게 하면서도 적절한 형태로 설계되어져 가는 과정을 보여준다.

4. 케이블네트와 레이티스 셀

현수곡선을 가지는 인장부재의 구성과 이치와 같은 압축부재를 사이에 있는 대칭성을 고려하여 압축부재를 이용한 셀구조 역시, 다양한 평면에 연속되는 곡선을 가진 구조를 이용할 수 있다. 케이블네트의 원리를 역진한 개념인 이러한 원리를 기 본으로 하여 원형기지가 이후 Frei Otto는 단순하 지나 원형 등에서 벗어난 압축력을시스템으로 곡면 셀구조를 설계하였다. 아래로 늘어지는 곡선은 위 로 둥근 곡선으로 압축되고, 케이블과 같은 인장 선체는 가는 목재라스로 대치되었다.

이러한 구조에서 형태탐색을 위한 모델링과정은 우선 지정에서 아래로 늘어진 체인에 의해 이루어진다. 그리고난후 목재라스 모델스터디들 통해서 찾아가는데, Frei Otto는 유연한 목재라스를 인장간 격의 네트로 구성하여 자연적인 형태를 찾고 최소한의 압축용력을 이용하는 레이티스 셀을 실험시켰다. 이 모델은 하나의 라스 위 아래로 적교하는 두 개의 라스를 덮어져 격을 이루고 초기에는 자유롭게 회전하는 접합으로 하여 압축용력이 발생하는 형태를 찾아내지만, 형태가 결정되면 접합부를 강하게 연결하여 형태를 유지시키는 방식이다.(그림 10 참조)

실제 레이티스 셀 모델의 형상탐색과정과 디테일 개발은 Mannheim의 Federal Garden Show(옌체니아: Ove Arup, 그림 9)에서 실현되었다. 이 구조는 레이티스 셀의 구조모형의 방식과 유연하게 유연한 목재라스형체로 50cm의 격자그리드를 구성하였 다. 유연한 목재라스형체들로 초기에는 힘을 일으 키며 자연적인 형상을 이루게 하였고 형태를 구성

(a) II 연구소에 있는 체인을 이용한 케이블네트모델

(b) II 연구소에 있는 목재라스를 이용한 레이티스 셀 모델

(그림 9) Mannheim Federal Garden Show
(외부전경, 내부)

(그림 10) 케이블네트와 목재라스형 셀 모델
한 후 새로운 접합디테일로 강성을 부여하여 넓은 박람회장의 공간을 덮을 수 있게 하였다. 이것은 케이블넷의 원리가 확장되어 역으로 이용된 구조 시스템으로 형태와 공간을 찾는 농동적인 접근의 결과인 것이다.

5. 디테일인기는 케이블구조

과거에 기념비적인 건축물들을 상징하던 케이블구조는 현재 높은 재료적 가능성과 활용성으로 인해 다양한 형태와 공간을 구성하는 방식으로 건축에서 그 능력을 펼쳐 보이고 있다. 실제 초기시대보다 컴퓨터를 이용한 설계 및 해석적 발달이 이를 뒷받침 하였으며, 설계자들의 창의적인 아이디어 뿐만 아니라 시공기술적인 측면에서의 발전도 요소가 되었다. 슈투트가르트에서 Frei Otto로 인해 가속화된 케이블이나 약을 이용한 연성재의 디자인 세계는 Jörg Schlaich 교수의 해석적 기술연구에 의해 크게 확장되고 전 세계를 통해 다수의 건축에서 실현되어 왔다.

최근에 이러한 시도와 작업은 O. Otto 교수와 J. Schlaich 교수의 임체이후 Werner Sobek 교수의 ILEK 연구소(Institute for Lightweight Stuctures and Conceptual Design)로 이어지고 있다. 보다 다양화되는 현대건축 속에서 최근 ILEK 연구소는 연성재를 건축구조 전 면으로 이끌어내는 것 외에도 보다 다양한 형태의 연성재의 적용, 환경요소를 고려한 인텔리전트 설계기술, 그리고 유리와 비슷한 신소재를 이들 연성재와 결합시켜 창의적인 구조시스템을 개발하고 건축에 적용하는 디자인영역을 넓혀가고 있다.

최근에 Werner Sobek에 의해 설계된 유리와 결합된 케이블넷의 예를 그림 11에서 보았다. 1996년에 설계된 Bad Neustadt의 Rehob clinic의 외부 공간은 어망을 연상시키는 케이블넷과 몇 개의 고정을 이루며 지붕을 이루고 있다. 이 케이블넷을 유리로 마감하여 눈부신 케이블넷 구조로 선보였다. 난은 외부하중에 저항하는 것 외에도 열에 민감한 재료들을 개별적으로 가동하도록 결합하는 것이었는데 클립과 같은 디테일을 개발하여 이러한 문제를 보다 쉽게 해결하였다. 과거 본토리움 박람회장에서 보여졌던 케이블넷은 이형듯 기술과 더불어 진화하고 있는 듯하다.

막과 케이블을 이용하는 구조방식은 베를린의 Sony Forum의 지붕구조에서도 보여졌듯이(그림 12) 건축물의 형태와 공간을 풍부하게 하는 요소로서 그 다양한 변화가 가속화되고 있고, 또한 최근의 유리파서드에 있어서도 연성재를 이용한 디테일의 설계가 다양화되고 있다.

Werner Sobek은 소나포럼의 유리파서드를 비롯하여 대단히 다양한 유리파서드를 설계하였는데, 최근 본(Bonn)의 Deutsche Post Tower에서는 유리파서드를 통해 건축의 형태와 공간결합에 직접적
물로 참여하고 구조적 성능을 비롯한 에너지 활용 기술 등을 통합적으로 고려하는 설계방식을 보여주 었다. 다른 사례를 통해서도 이러한 설계가 지향 하고 있는 바임을 분명히 보이고 있었다.

이제 구조디자인의 세계는 보다 자연스럽게 활용 하게 된 연성체와 기존의 강성체 그리고 유리를 비롯한 여러 신소재들이 복합적으로 활용되어 무한의 가능성을 보이고 있다. 이들 재료의 특성과 형태를 이용하여 효과적인 형태를 창출해 내고, 설계하고 적절한 디테일을 개발함으로써 기술적인 난제를 해결해 가고 있다. 그럼으로써 우리는 보다 극적이고 끼리마작한 건축의 공간과 형 템을 알게 되는 것이다.

구조를 건축의 표면으로 끌어들이고 다양한 구상의 한 방면으로 이용하는 것은 보다 합리적인 대 안이 될 수 있다. 이를 가능하게 하는 것은 구상 자체의 창의성이 뿐만 아니라 과거로부터 이어지는 수많은 모델과 실험이, 그리고 그것을 기술적으로 가능하게 하는 디테일의 개발까지 밀도 높은 연구와 창의적인 시도가 그 열쇠가 되었다고 할 수 있다.

이들 구조디자인의 선구자들의 발전과 작품의 행진을 보면 있는 마음은 설계하면서도 차분해진 다. 건축에서 의도하는 형태와 공간의 다양성을 고려한 구조체계에 대한 실험적 연구와 창의적인 설 계이디어, 그리고 이를 현실화하고자 하는 보다 기술적인 측면의 실험을 통해서도 만도 있는 연구가 누적되지 않는다면 우리건축의 외국기술의존도는 높아질 수 밖에 없을 것이다.

건축에 있어 구조와 더불어 극적인 감동을 끌어낼 방법은 없는 것인가. 구조가 보여주는 끝없는 가능성을 생각하고, 예술과 기술 그 극점에 서 있는 진 정한 건축을 향한 구조의 새로운 모습을 기대한다.