기술 특징

SuperSlim의 새로운 기회
고남제 (LG Philips Displays)

요 약

LG Philips Displays (LPD)의 SuperSlim은 125 도의 폭과 Deep Gun insertion을 적용하여 개발한 길이 350 mm의 초슬림 CRT이다.

SuperSlim은 높이만큼 디자인으로 브라운관의 주력시장으로써 CRT의 life cycle을 오랫동안 연장시킬 것이다.

I. 소개

SuperSlim은 최초로 개발한 LPD는 전장길이 350 mm의 32” Real Flat SuperSlim을 만들어념으로써 CRT 엑세의 새로운 장을 열었다.

새로운 전자광학적 결합을 적용하여 초장각 전향이 가지 고 있는 문제들을 해결한 LPD의 SuperSlim은 우수한 가격경쟁력과 디스플레이의 기본적인 화질특성을 가지고 있어 TV Set Maker들이 좀 더 flat하고 짧은 전장의 CRT를 개 발하여 주력시장의 high end TV를 만들 수 있도록 하는 높은 기술이 될 것이다.

II. CRT Tube 설계

CRT TV는 약 450 mm 길이의 기존의 가구들과 잘 어울리도록 요구되어 많은 업체들이 오랫동안 길이를 줄이기 위 해 노력했지만, 대부분 기술적인 문제들로 극복하지 못하고 상용화에 실패했다.

32” Real flat SuperSlim은 전자방과 평평요구, 마스크, 글라스를 각각 개별적 설계부품으로 본 것이 아니라 전체를 시스템적으로 고려해서 통합 설계를 함과 동시에 설계기술과 생산기술을 함께 적용함으로써 상용화에 성공할 수 있 었다.

이러한 길이의 장점은 일부 부품의 변형 또는 일부 공간의 변동요인을 최소하면서 요구되는 품질을 만족시킬 수 있 다는 것이다.

SuperSlim의 컨셉은 글라스의 전공용역, 스크린 코너의 포커스, DY의 Geometry, 소비전력의 문제를 해결한다는 것이다.

이러한 문제의 해결과정은 아래의 issue를 통해서 발견할 수 있을 것이다.
1. Glass

SuperSlim 글라스의 메인 Issue는 진공응력을 감소시키는 설계에 있다. 진공응력은 기존 모델보다 전장율 줄임으로써 크게 증가하게 된다.

그래서 다음과 같은 새로운 기술로 진공응력을 설계에 만족하도록 최적화 하였다.

1) 진공응력 해결 안
전장같이 가볍게 설계된 진공응력은 더 커지게 된다. 그래서 우리는 이러한 진공응력 기준을 만족하도록 글라스 설계를 최적화 하였다.

2) Funnel의 Seal Edge 두께 최적화

최대 진공응력은 Y축 seal edge 바깥부분에 나타난다. 32” SuperSlim은 일반적인 기존모델보다 진공응력이 30% 크다.

이러한 문제는 X축, Y축, 대각축으로 Seal Edge를 변화시켜 Seal Edge에서의 진공응력을 최소화 시켰다.

![Distribution of Vacuum Stress]

3) Funnel의 Body부 곡률 최적화

Funnel body부의 최적 변형과 응력에 대해서는 Funnel의 두께와 곡률을 Seal Edge에서 Yoke까지 변화시키면서 funnel body부에서의 응력을 최소화 시켰다.

4) 앞쪽형상의 최적화

CRT를 개발할 때는 안정성을 확보하기 위해서 반드시 앞쪽 test를 통과하여야 한다.
(국제 규격: IEC61965)

가장 어려운 문제중 하나는 미사일 test에서의 폭죽 현상이다. SuperSlim은 Seal Edge 두께와 body 형상 최적화를 통해 이 문제를 해결하였다. 또한 CRT의 스탠드 위치를 변화시켜 최적성계 함으로써 글라스의 앞쪽 test시 패턴의 비선토 조절할 수 있었다.

2. Shadow Mask

전차량은 새로운 마스크를 통해서 스크린에 도달하게 된다. SuperSlim에서는 편향가가 증가함에 따른 스크린 코너 부에서의 빔 이동의 민감도가 기존 모델보다 1.5배 커지게 된다. 이것은 마스크의 강도와 열적 특성을 극도로 열화시키게 되고, SuperSlim의 purity 특성을 열화시키게 된다.

1) 강도 설계

마스크피치와 곡률은 동시에 최적화 되어야 하는데, 마스크 피치의 최적설계로 마스크 곡률을 좀 더 Arc지게 할 수 있다. SuperSlim는 이러한 피치 전개를 사용하여 곡률을 좀 더 Arc지게 할 수 있었다. 또한 SuperSlim의 곡률 반경도 주변으로 감수록 좀 더 부드럽게 감소하도록 설계함으로써 충격 특성을 향상시킬 수 있었다.

![Deformation Shape of Shadow Mask]

2) 열팽창량의 감소

마스크 피치와 마스크 곡률의 최적화로 SuperSlim의 스크린 특성을 향상시키는 purity 마진을 좀 더 확보할 수 있었다.

여러한 구조설계가 SuperSlim의 열팽창과 진동 특성의 항상성을 가져올 수 있었다.

![Shadow Mask thermal expansion]
3. Deflection Yoke

일반적으로 In-line Self Convergence 방식의 편향요크는 화면 전역에서 RGB 3개의 전자빔의 Convergence와 Distortion을 맞추기 위하여 수평편향요크의 자게는 Pin-cushion형 (positive 6-pole) 자게를 수직편향요크는 Barrel형 (negative 6-pole) 자게를 사용하고 있다. 현재 대중화되어 있는 TV용 브라운관의 경우 102도 근처의 편향각을 가지고 있다. 그러나 편향각이 125도까지 커지게되면 수평편향 에너지가 극차적으로 편향각의 편향에 비례하게 되므로 소비전력의 증가와 화질감소 (Convergence & Raster Distortion & Focus)의 영향이 1.5배 이상 발생하게 된다. 이를 해결하기 위하여 아래의 기술을 적용하게 되었다.

1) 전력소비량
소비전력은 최소한으로 줄이기 위하여 고성능의 브라운관에 제한적으로 적용되고 있는 RAC형의 편향요크를 적용하였으며, 부가적으로 Funnel Core과 전자빔 궤적의 최적화 및 고압의 down를 통하여 약 50mJ의 편향효율의 편향요크를 설계하였다.

2) 최적의 Raster distortion and convergence
최적의 Raster Distortion과 Convergence 특성을 얻기 위하여 수평편향요크와 수직편향요크의 상대위치를 조절함으로서 이용할 수 있는 Double MusSEL형의 조절을 적용하였으며, 화면의 1/2지점에 나타나는 Inner Pin Distortion은 해결하기 위하여 classical "좌우 inner-pin distortion은 Chassis와 공동으로 개선하였고, 상하 inner-pin distortion은 magnet와 편향요크의 최적화를 통하여 개선하였다.

3) 발열
HD 방송에 사용되는 편향요크는 고주파수가 적응되어야 한다. 편향주파수의 증가는 발열의 증가로 나타나므로, Skin effect (표피효과) loss와 Proximity effect (근접효과) loss 를 줄이기 위한 가는 동선(Litz wire)의 적용 및 충분한 방열 면적을 갖는 편향요크 설계기술을 적용하여 신뢰성 부분에서도 문제가 되지 않는 32" SuperSlim DY를 개발하게 되었다. (그림참고)

4. 전자총
Self converging형의 DY (비균일 자게)를 사용하는 브라운관에서 편향되어진 전자빔은 약 2배 증가하고, Self converging형의 DY 자개 (비균일 자개)는 화면 주변부에서 수평방향으로 스트 스트레이트의 회로를 그리고, 수직방향으로는 Halo를 유발시킨다.
이것을 억제하기 위해서 중앙 브라운관에서는 화면전력에서 극한한 포커스를 얻기 위해서 다이나믹 전자총을 사용하였다.

급발한 포커스는 중앙 브라운관에서 SuperSlim 브라운관으로 가수록 주변 문제로 대두된다. 화면 중앙부에서는 스트 스트레이트가 작아지고, 화면 주변부에서는 수평방향으로 큰 확장성이 스트래트를 만들어 급발한 포커스를 유지하기 극한하다.

1) DAF Explosion
SuperSlim 브라운관의 화면 주변부에서의 전자빔은 광각 편향 각기에 의해서 매우 열화되었다.
만약 SuperSlim 브라운관의 일반적인 다이나믹 전자총의 개념을 사용한다면, 화면 주변부에서 Halo를 계거하기 위해서는 다이나믹전압을 4.5KV 이상 인가해야 한다.

SuperSlim 브라운관에 있어서 이 DAF Explosion을 제
거하기 위한 방법으로는 두 가지의 접근법이 있다. 한 가지는 형태의 전자총에 사용 가능한 DY를 개선하는 것이다. Ueda에 의해서 주장되었던 이 접근 방법의 별난 점은 TV회로에서 화면 주변부에 많은 편향 보정이 필요하다는 것이다.

다른 접근 방법은 LPD에 의해서 제안되었다. SuperSlim 브라운관이 적합한 새로운 전자총의 개념을 적용한 것이다. 이 방법을 적용하면 TV회로에서 이러한 보정이 없이 DAF Explosion 문제를 해결할 수 있다.

이 혁신적인 전자총의 개념은 이미 소개되어 있는 2) Zero DAF 개념
편향으로 인한 포커스의 영향을 수직방향의 전자빔을 축소하면서 가능하다고 알고 있다. 매우 깊이 빌기 다이나믹 전자총에서 화면 주변부를 항하는 곳에 적용되었다.

그리고 우리는 이러한 전자 방향의 어른을 연합히 고안하였다. 우리는 modified 수학의 균형을 실질적으로, 매우 작은 전자빔을 사용하면 재현할 수 있는 사실을 활용하였다.

우리는 DAF Explosion 문제를 기술적으로 해결할 수 있는 방안을 소개하기로 하였다.

그러므로 Zero-DAF 전자총을 적용한 SuperSlim 브라운관은 화면 전역에서 균일한 포커스를 얻을 수 있었다. 이 기술은 이미 '03 SID에서 소개된 바 있다.

![Zero DAF](image)

III. 결론

SuperSlim 브라운관의 성공적인 개발은 수수한 화질과 가격 경쟁력을 갖추고 있으며 부파와 전장이 큰 CRT의 단점을 새로운 전자방향 기술의 융합과 기술혁신을 통해 해결했다고 할 수 있다.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>32” Superslim Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Depth</td>
<td>350 mm</td>
</tr>
<tr>
<td>Deflection Angle</td>
<td>125°</td>
</tr>
<tr>
<td>Deflection Unit</td>
<td>Double Mussel</td>
</tr>
<tr>
<td>Neck Diameter</td>
<td>29.1 mm</td>
</tr>
<tr>
<td>Anode Voltage</td>
<td>30.0 kV</td>
</tr>
<tr>
<td>Static focus Volatage</td>
<td>26.5%</td>
</tr>
<tr>
<td>Electric Gun System</td>
<td>Single Focus</td>
</tr>
<tr>
<td>Bulb</td>
<td>RAC Cone</td>
</tr>
<tr>
<td>Weight</td>
<td>40kg</td>
</tr>
</tbody>
</table>

1. 주류 TV 시장에서의 위상

SuperSlim은 수수한 화질과 습관적인 외관을 주요 강점으로 TV시장에서 큰 자리매김을 할 수 있었다.

현 TV시장을 살펴보면 단상의 기술이 250 $ 미만인 CRT 제품이 60%, 500 $ 미만인 CRT 제품이 20%, 1000 $ 미만인 CRT 제품이 11% 그리고 그 나머지 시장은 PDP, LCD, PTV가 모두 합쳐 9%를 각각 차지하고 있다. SuperSlim을 통해 여전히 TV시장에서 CRT는 90% 이상의 주력시장을 확보할 것으로 예상된다.

2. SuperSlim 향후계획

앞서 초기로 초소형 CRT를 생산한 LPD는 21인치 SuperSlim을 영국에 성공적으로 출시한 후 중국지역에서 제품 생산공장을 가동하였다.

한국에서는 2005년 1월부터 고객의 시장 수요를 파악하여 후속작업을 시작으로 점진적인 대량생산 단계로 전환하였으며 이와 함께는 현재 연중간 21인치 SuperSlim을 본격 생산할 계획이다.

향후 LPD는 CRT의 편향작용을 늘리는 것을 개발혁신의 중점과제로 추진할 것이다.

References

[2] Frits C. Gehring, “A Slim CRT to Compete with
Flat Panels” (SID, 2004).

