압축효과를 가미한 도광판의 전사성과
복굴절 향상에 관한 실험적 연구

민인기 1,2. 김종선 1. 고영배 1. 박형필 1. 윤경환 2. 황철진 6,1

An Experimental Study on The Improvement of Pattern Replication and Birefringence in LGP by Adding Compression Effects

I. K. Min, J. S. Kim, Y. B. Ko, H.P. Park, K.H. Yoon, C.J. Hwang

(Received September 9, 2005)

Abstract

It is necessary to improve the pattern replication and birefringence in LGP(Light guide panel) for better optical performance. In the present paper, the effects of injection-compression and injection-press mode with normal injection mold on the distribution of transcription of pattern and birefringence were studied. It was found that the values of pattern replication was improved and the birefringence was reduced for the cases of low initial clamping force in injection-compression mode and for the cases of longer mold opening length in injection-press mode, repectively.

Key Words: Injection Molding, Injection-Compression Molding, Injection-Press Molding, Birefringence, Residual stress

1. 서 론

휴대폰 BLU(Back-Light Unit)의 기본 구조는 광원 역할을 하는 LED와 점 광원인 LED에서 나온 광을 면 광원으로 바꿔주는 도광판(Light Guide Plate, LGP), 그리고 도광판에 의해 만들어진 면 광의 휘도 및 시야각을 조절해주주는 휘도조절 필름들로 구성되어있다. 도광판의 경우 대부분 사출 성형에 의해 만들어 지고 있으며 도광판의 성형에 있어 중요하게 고려되는 요인으로는 복굴절 및 전사성은 물론. 도광판의 두께가 얇은 경우 제품의 성형 시 앞서 말한 특성들의 제어에 어려움이 있으며 설계한 의도의 광학적 특성을들 얻기기에 힘들다. 그래서 품질이 우수한 도광판을 생산하기 위해서 도광판 내부의 장류 복굴절(birefringence)의 양을 줄이려는 것과 패턴의 전사성향상을 위한 연구가 활발히 진행 중이다.

패턴의 전사성 저하와 내부에 남아있는 복굴절의 발생은 액체상태의 수지가 금형 내에 유입되면서 금형 벽면과의 운도차이로 인해 급격히 고화되면서 유동저항의 증가로 수지의 유동을 방해하여 전사성을 저하시키고 복굴절을 증가시키게 된다. 도광판 패턴의 전사성을 향상시키기 위해서는 금형의 온도를 조절하는 방법과 사출속도를 높여 성형하는 고속사출성형방법과 사출압력을 높이는 방법, 그리고 사출/압축성형법 등이 있다. 하지만, 사출속도를 늘이거나 사출압력을 높일 경우 도광판 내부에 잔류유력의 증가로 복굴절이 증가하는 경향이 있다. 도광판 전체에 분포하는 복굴절의 양을 줄이는 방법은 수지가 정해져 있
눈은 크게 두 가지 방법이 있다. 하나는 냉각수의 유리 조절 등 금형 구조 개선을 통한 방법이고 다른 하나는 축압압출 성형법을 이용하여 성형법 자체를 개선하여 과도 상의 복률의 양을 줄이는 것이다[1]. 사출성형 후 도장판에 존재하는 복률의 양은 기판에 입사된 흰성과 또는 반사 시 일어나는 편광 상태의 변화를 측정할 수 있었다.

본 논문에서는 위의 사람들을 고려하여 일반 2 인치 휴대폰용 도장판 금형과 형체압축성형이 가능한 LS 전선의 사출 성형기를 사용하여 압축효과를 가미한 형상성 도장판의 복률의 저장과 편광의 전시성향상에 관한 실험 결과들을 보이고자 한다.

2. 사출성형 및 형체압축성형

2.1 사출성형 및 사출 압축성형 개요

사출 성형은 성형기의 가로와 장치에서 용융된 수지를 금형의 내부에 충전시키고 사출된 수지를 냉각, 고화시켜 원하는 형상품을 만드는 성형 기술이다. 일반적인 사출성형에서는 용융 수지를 케이스에서 고압으로 주입한 후 냉각에 따른 수축물을 보유한 과정을 거쳐 보완하여 성형한다. 사출/압축성형은 금형의 구조에 따라 코로압축성형(core-compression molding)과 형체압축성형(injection-press molding)으로 나눌 수 있으며 이번 실험에서 사용한 형체압축 성형은 압축 방식에 따라 사출 압축모드(injection-compression mode)와 사출 프레스 모드(injection-press mode)로 나눌 수 있으며 Fig. 1처럼 정리할 수 있다.

일반적인 사출성형 방법은 Fig. 2(a)처럼 사출이 시작되기 전부터 냉은 형체력을 가해준 후 케비터(cavity)내에 수지를 충전시키고 사출하는 방식이다. 하지만, 이러한 일반적인 사출방법의 경우 형성된 공간에 수지를 유지해야 하므로 냉은 사출 압력과 사출속도 및 보압을 필요로 하며 결과적으로 냉은 형체력을 요구한다. 한편, 사출 성형품 내에 형성된 복률은 수지가 유동하면서 발생하는 유동에 의한 복률의 플로우 인ду스티드 바이어프린지(thermal-induced birefringence)과 냉각 과정 동안 생성되는 열에 의한 복률의 셜로티드 바이어프린지(low-induced birefringence)로 나눌 수 있다[1-2]. 열에 의한 복률의 원인으로는 금형 내에 수지의 불균일 냉각 등 전체적으로 금형내의 온도분포에 의한 영향을 많이 받으며 대체로는 제품의 두께를 급격히 한다거나 금형내의 냉각수 유로조절 등 금형의 구조개선을 통하여 어느 정도 해결할 수 있다. 유동에 의한 복률은 금형 배면에 인접하여 냉은 전단응력과 냉은 냉각속도의 복합적인 원인으로 고화된 중에 의해 발생한다. 이를 줄일 수 있는 방법으로는 냉은 수지온도 및 금형온도 등 수자의 유동을 개선하여 해결할 수 있다. 이번 실험에서 주안점을 두는 형체압축성형은 바로 이 유동에 의한 천류응력을 줄이기 위함이다. 형체압축성형은 사출 후 충전된 수지를 금형 전체에 압력을 가하여 유동에 의해 발생한 배향을 완화시켜 진류복률의 분포를 균일하게 하며 전체 적인 양을 줄일 수 있다. 또한, 금형을 열어놓거나 냉은 형체력을 유지하는 상태에서 사출을 하기 때문에 사출과정에서 요구되는 진류 복률의 양을 저감시킬 수 있으며 사출
2.2 사출압축 모드와 사출 프레스 모드
Fig. 2(b)에서 설명하고 있는 것은 사출 압축모드 (injection-compression mode)이며 이 시험방법은 초기에 매우 적은 형제력으로 급행을 제어하고 있다. 수지가 캐비티 내에 유입되면서 사출압력 이 설정한 형제력보다 높으면 급행이 역행(δ) 가 두 번째 형제력이 작동하는 방식이다[6].
Fig. 2(c)에서 설명하고 있는 사출프레스모드 (injection-press mode)는 이 경우에는 사출 압축모드와 달리 초기 설정치(5) 만큼 급행 을 얻어놓았다가 사출이 완료되면서 급행을 닫는 것이다[6].

Fig. 3에서 보는 바와 같이 일반 사출상형 방법과는 달리 형제 압축방식은 초기에 급행을 개방 해 놓는다거나 사출 초기에는 낮은 형제력을 설정하였다가 사출이 완료된 다 패턴 형제력을 이용하여 일반 사출상형에서 급행 캐비티 내에 수지를 충전시킬 때보다 최대 형제력 및 사출압력을 낮추는 것이기 때문에 적은 형제력으로도 사출상형이 가능하므로 따라서 복공절의 지갈효과 압축의 영향으로 패턴의 전자성 향상을 얻을 수 있다[8].

본 논문에서는 Fig. 4(a)처럼 LS 전신의 LGE-110D 모델의 형제압축 사출 성형기를 이용하였고, Fig. 4(b)의 2 캐비티(2-cavity)의 2 인치 휘돌을금 형를 사용하였으며, Fig. 4(c)에 본 사출기와 급행을 사용하여 만든 도공판을 도시화 하였다. LS 전신의 LGE-110D 사출기를 사용하여 Fig. 2에 보인 바와 같이 2 가지 방식(사출 압축모드, 사출 프레스 모드)으로 형제압축시험을 할 수 있었다.

3. 복공절 및 광탄성 이론
3.1 복공절
분자의 구조가 동방성 물질이라도 응력을 받아도 광학적 이방성을 가지게 되며 Fig. 5에 보는 바와 같이 형광인 빛이 z 방향으로 진행할 때 진 동 방향에 따라 진행 속도가 다르게 된다. 이 때 가장 빠르게 진행하는 축을 fast axis, 가장 느리게 진행하는 축을 slow axis 라 부르며 두 축 사이의 각도는 90°를 이룬다. Fast axis 와 slow axis 들 각 굴절률에 관한 주축이라 하며 각각 점점된 빛이 광학적 이방성인 물체를 통과할 때 fast axis 와 slow axis 로 성분이 분리되며 두 파형 사이에는 경로차 또는 위상차가 생긴다. 이러한 속도차에 의해 발생하는 두께 d 를 통과하는 사이의 거리 경로차, \(D_p\)는 다음과의 식 (1)로 계산할 수 있다.

\[D_p = (t - t_0) c = \left(\frac{d}{\nu_s} - \frac{d}{\nu_f} \right) c = (n_s - n_f) d \]

여기에서 \(t \) 는 매질 통과 시간, \(v \) 는 매질 통과 속도, \(c \)는 진공 또는 공기 중의 빛속, \(n_s, n_f \) 는 각각 slow axis 와 fast axis 의 굴절률이며 그 차이를 동상 복공절의 값을 \((\Delta n) \)이라 부른다[7].

3.2 광탄성 이론
1816년 David Brewster는 두파성이 있는 동방성 물질이라도 응력을 가하면 광학적으로 이방성을 띄게 된다는 것을 발견하였다. 이러한 현상을 광
타성(photooelasticity)이라고 하며 이방성에 의한 복률을 주요 원리 차에 비례한다. 선형 광탄성(linear Photoelasticity) 이론에서는 등방성물질이 응력을 받으면 편광된 광학 주축 방향의 괴물의 차이가 주응력의 차이에 비례하여 다음 식 (2)와 같다.

\[n_i - n_j = C(\tau_i - \tau_j) \]

여기에서 \(i, j, k = I, II, III\) 주축의 방향이며, \(\tau_i, \tau_{II}, \tau_{III}\)은 세 주축 방향의 주응력이다. 또한, \(n_i\)는 주축 \(i\) 방향으로 편광된 괴물과 괴물의 동력값이며 \(C\)는 광 탄성계수(stress-optical coefficient)이다. 본 실험에서 사용한 PMMA의 경우 상온에서의 광탄성을 계수는 약 \(-5\text{Br} (1\text{Br} = 10^{-12}\text{ Pa}^2)\) 정도이다. 복률이 있는 샘플에 경로자가 발생하는 경우 선행 투광기를 통해 보이는 색상은 간섭색(interference color)라 하며, Fig. 6에서 하단의 숫자로 표시된 것과 같이 경로자가 증가할 때 이에 비례하여 간섭색(interference color)이 변화하게 된다[7].

4. 측정장치 및 실험조건

4.1 측정장치의 구성

본 논문에서는 폐턴의 형상을 측정하기 위해Fig. 7과 같이 Nanofocus의 3D-profiler을 사용하였으며, 샘플에서 발생하는 경로자가 1/2 파장안에 있는지 확인하기 위해 Fig. 8과 같이 원만과 시스템을 사용하였다. 시스템의 구성은 Edmund Industrial Optic 사의 편광 필름 2장, 1/4 파장판 2장, 그리고, LED 평면 광원, 그리고 복급을 이미지의 촬영을 위하여 Canon사의 300D 디지털 카메라, 마지막으로 CANON EF 180mm f/3.5L Macro USM 렌즈를 사용하였다[7]. 샘플 내 복률 값의 측정은 레이저와 보상관(compensator)을 사용한 point-by-point 측정으로 행해졌으며 Fig. 9에 그 시스템의 개요도를 보였다.

이번 실험에서 사용한 LS전선 LGE-110D 모델은 최대 형제력이 110ton이며 금형의 염열조정 시 최대 형제력을 조정할 수 있다. 본 연구에서는 최대 형제력을 80ton으로 설정하여 실험하였으며 수지는 SUMITOMO의 PMMA(grade: MGSS)를 사용하였고 설린더의 온도는 230℃이며 금형온도는 55℃로 설정하였다. 실험은 일반단순사출성형
(general injection molding)과 사출압축모드(injection-compression mode), 사출프레스모드(injection-press mode) 세 가지의 실험을 하였으며 초기 형제력 및 형계 거리를 조절해가면서 실험을 하였다.

4.2 형체압축형성: 사출압축모드
사출압축 모드에서는 일정한 형체력을 유지하는 일반단순 사출 성형과 초기 형제력을 작게하여 사출압에 의해 금형이 열리게 하는 사출압축 모드에서는 초기 형제력을 75ton, 55ton, 35ton으로 변경해주며 일반 단순사출성형과 비교하였으며 실험 조건은 Table 1과 같다.

4.3 형체압축성형: 사출프레스모드
사출프레스모드에서는 일반 단순사출성형과 사출과정 전에 금형을 초기 설정치 만큼 형계 후 형체 과정이 이루어지는 사출프레스모드에서는 초기 형제거리를 0.10mm, 0.13mm, 0.17mm로 변경해주며 일반단순사출성형과 비교하였으며, 실험 조건을 정리하면 아래의 Table 2와 같다.

| Table 1 Conditions of injection-compression mode |
|-----------------|-----------------|
| | 1st clamping force | 2nd clamping force |
| General injection molding | 80ton | 80ton |
| Injection-compression mode | 75ton | 75ton |
| | 55ton | |
| | 35ton | |

| Table 2 Conditions of injection-press mode. |
|-----------------|-----------------|
| | 1st mold opening length | 2nd mold opening length |
| General injection molding | 0.00mm | 0.00mm |
| Injection-press mode | 0.10mm | 0.01mm |
| | 0.13mm | |
| | 0.17mm | |

5. 결과 및 토의
본 논문에서는 형체압축을 이용하여 도장판 성형품에 대하여 전사성 및 게이트 부위에서 발생하는 복결결의 저감시킬 수 있는 방법에 대하여 실험하였다.

Fig. 10 Pictures of a stamper and its profile

Fig. 11 Pattern replication of LGP (a) injection-compression mode (b) injection-press mode

Fig. 10은 이번 실험이서 사용한 스텔프의 형상으로 사용한 패턴은 애정에 의해 형성된 패턴이며 지름은 약 80μm 이고 길이는 각 부분마다 다르지만 측정한 dot은 스텔프에서의 중심부에서 8.02μm의 높이를 가진다. 전사성비교를 위한 샘플의 측정은 항상 일정한 위치에 있는 dot을 정하여 반복 측정하였으며 길이와 성형품의 높이의 비율로 간단하게 전사성을 정의하고 패턴의 형상을 측정하였다.

Fig. 11(a)는 사출압축모드(injection-compression mode)
Fig. 12 (a) Coordinate of measurement, (b) A picture under the plane-polariscope, (c) Distance from a gate vs. birefringence of the sample made by injection-compression mode

mode의 형상을 측정 결과로 초기 형제력을 기존의 80ton과 유사하게 75ton으로 설정했을 때에는 일반 단순사출형성과 전사상의 차이가 크게 나지 않지만 그보다 낮은 55ton, 35ton으로 설정했을 때에는 패턴의 최대 높이만을 높 때 전사율은 약 95%로 크게 향상된 것을 알 수 있었다.

한편, Fig. 11(b)는 사출 프레스모드(injection-press mode)를 사용했을 경우의 형상을 보여주고 있으며, 초기 형제력의 조건이 0.10mm에서 0.17mm로 바꾼 결과 단순사출의 결과에 비해 전사상의 형상을 크게 향상할 수는 있음을 알 수 있다. 일반 사출형성의 경우 중심에서 패턴의 최대 높이가 6.9㎛ 정도임을 반해 형제력이 0.17mm 일 경우 패턴의 최대 높이는 약 7.6㎛로 짧이르므로 별 별 약 96%까지 전사상의 형상을 향상시켰다.

Fig. 12는 Fig. 9의 설정을 이용하여 일반 단순사출과 사출압축모드(injection-compression mode)의 북균절 측정의 결과이다. (a)에 보이는 바와 같이 개의와 성형품이 반대는 위치를 0으로 하고 섬철의 바깥쪽으로 위치를 옮겨가며 북균절을 측정하면서 일반 단순사출형성, 즉, 초기 형제력이 80ton인 경우 북균절의 값(Δn)은 개의 부근에서 약 2.1x10⁻⁴의 최대값을 나타내며 개의에서 멀어질수록 북균절 값이 감소하는 현상을 보이고 있으며, (b)에 표기한 사이에서의 패턴 사전은 보이지만 초기 형제력 값을 75ton으로 설정한 경우에도 큰 변화가 보이지 않지만 55ton 일 경우부터 북균절의 값이 현저히 줄어드는 것을 볼 수 있으며 35ton으로 설정하였을 경우 최대 북균절의 값이 5.67x10⁻⁵으로 현저히 감소한다는 것을 알 수 있었다. 30mm 이상에서는 심지어 부호가 바뀌는 현상도 발견되었다. 이는 초기 형제력의 설정 값을 55ton, 35ton으로 줄일 경우 캔버티네 압력과 면적의 적분값이 초기 설정 형제력보다 클 경우에는 형열선으로 인해 캔버티에 두께가 상대적으로 커지 전단력이 작아지며 이 때 발생한 전자유출의 방법 작아져 최종에 잔류하는 북균절이 감소하는 것이다.

Fig. 13은 일반 단순사출형성의 결과와 초기 형제력을 조절해가며 성형한 사출 프레스 모드 (injection-press mode)의 북균절의 값을 측정한 결과를 보이고 있다.

일반 단순 사출형성의 결과 최대 북균절 값은 2.1x10⁻⁴을 가지며 초기 형제력을 0.10mm로 설정할 경우 최대값은 약 1.81x10⁻⁴이며 전체적으로 약간 감소하는 경향을 보였다. 초기 형제력을 크게 설정할수록 형제를 내부에 남는 북균절의 값은 줄어드는 것을 보여주며 0.17mm일 때의 값은 보편 예외값 약 8.0x10⁻⁴로 사출압축 모드의 경우와 같이 현저하게 감소하였음을 볼 수 있다. 사출 프레스 모드에서는 캔버티 내로 처음 유입 될 때부터 급히 성형이 열려있으므로 캔버티 두께가 커진 상태에서 사출형성화를 시작하는 것이기 때문에 초기부터 전단력이 작아져 잔류하는 북균절 값이 작아진 것이다.

이렇게 형제압축을 이용하면 수지가 캔버티 내로 유동될 때 급히 열어놓거나 낮은 형제력을
유지함으로써 적은 형제적으로 성형 시 발생하는 전류 복구질의 양이 감소한다는 사실을 실제 폐턴이 있는 도광판 샘플을 통해 정량적으로 증명 할 수 있었다.

6. 결론

본 연구에서는 사출압축과 사출프레스 모드를 사용한 압축성형 방법으로 엔드론용 BLU의 도광 판을 성형하여 폐턴의 전사성과 도광판 내 전류 복구질의 분포를 측정하여 다음과 같은 결론을 얻을 수 있었다.

(1) Fig. 3에 보인 바와 같이 형제압축 성형은 이 용함으로써 보다 적은 형제력으로도 도광판의 성 형이 가능함을 실현적으로 보였다.

(2) Fig. 11에 보인 바와 같이 형제압축 성형법을 통하여 폐턴의 전사성을 향상시킬 수 있음을 보였다.

(3) Fig. 12와 Fig. 13에 보인 바와 같이 형제압축 성형법을 통하여 도광판 내부에서 발생하는 복 구질의 양을 획기적으로 줄일 수 있음을 확인할 수 있었다.

후기

본 연구는 2010 생산기술 혁신 기술개발 사업자 원으로 연구되었으며 본 연구에 기술적 휴원을 도와주신 박성호님, 한기환님, 정성욱님, 김석영님 등 LS전선 분들께 감사의 드립니다.

참고 문헌