Ecological Characteristics of Actinomycetes from Mercury and Chrome Polluted Soil

Min-Hye Cho, Sang-Mi Han¹, Ha-Ju Baek² and Kyung-Sook Whang

Department of Biotechnology, Mokwon University, Daejeon 302-729, Korea
¹Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon 441-100, Korea, ²Gyeonggang Buk-Do Government Public Institute of Health and Environmental, Daegu 720-710, Korea

Abstract – Ecological characteristics of microbial populations inhabiting heavy metal polluted soil were investigated. The samples were collected from 293 sites around an factory and industry at Gyeonggangsbuk-do. We measured the contents of seven heavy metal elements (Cd, Cu, As, Hg, Pb, Cr⁶⁺, CN), seven sites have been seriously contaminated by mercury and chrome. A quantitative evaluation of microbial populations in mercury and chrome contaminated soil was examined by using plate count method. Bacterial numbers in polluted soil samples ranged from 7.4 × 10⁵ to 9.3 × 10⁷ cfu g⁻¹, about 10~100 fold less than the count for the unpolluted soil. Moulds were not detected in chrome polluted soil. The log values of actinomycetes of each contaminated soil samples were log ranged from 6.18 to 7.52. The ratio of actinomycetes was similar to unpolluted soil. The investigation showed actinomycetes to be the major microbial population inhabiting the mercury and chrome polluted soil.

Thirty-one isolates among the total isolates were examined for antibacterial activity. These isolates were identified based on a phylogenetic analysis using 16S rRNA gene nucleotide sequences, they were categorized in three major phylogenetic groups, belong to the Streptomycetes (6 strains), Saccharopolyspora (3 strains), Nocardioptes (1 strain). On the phylogenetic tree, the clade consisting of five isolates were distantly related to all of the established Streptomycetes genera, indicating the possibility as members of new species.

Key words : Actinomycetes, Chrome, Mercury, Micrflora phylogen}

서 론

토양은 인간, 동식물, 미생물의 터전이며 인간에게

식량, 물, 휴식공간을 제공하는 귀중한 자원의 보고이다. 이러한 토양은 오염물질을 분해 또는 완충시키는 역할 을 함으로써 환경오염을 스스로 정화할 수 있는 기능 이 있다(Goyer 1997). 그러나, 1970년대 이후 공정적인 산업발전에 따라 배출되는 오염물질은 토양의 허용한계 이상으로 축적되어 토양의 자정기능을 상실해 하였으며

중금속 오염토양에 대한 저감까지의 미생물학적 연구는 중금속으로 인한 오염토양 수준과 특성에 관련 연구 (조 등 1995; 김 등 2002)를 비롯하여, 미생물이 생물지화학 순환의 주요 구성원이 생태계 내에서 유기물을 분해하는 역할을 맡고 있는 중요한 배경에 중금속에 대한 미생물의 다양한 작용 및 해독작용이 다수 보고된 바 있다 (Foster 1983; 박 등 1992). 이러한 중금속에 대한 미생물의 다양한 해독작용에 의하여 생물물질은 중금속에 대하여 내성을 지닐 수 있게 된다. 끝으로 아니라 대부분의 중금속 유입이 과도하기 때문에, 중금속 내성생물은 면역 대수적 반응을 동반하여, 처리된 후 재조합 되어 중금속 내성생물을 동시에 가질 그리고 있는 R-plasmid 형태로 자연 생태계에서 종종 출현되고 있다 (Rubens et al. 1979; Perry and Silver 1982; 이 등 1993). 최근 연구에서 이러한 미생물을 이용한 오염지역의 생물학적 복원방법의 활용이 주목되고 있다. 본 연구는 중금속 오염이 예상되는 경상북도 내 23개의 공업지역을 대상으로 토양 오염분을 분석하였고, 이들 공업지역의 중금속과 6가크롬의 오염도가 심각하게 나타난 7개 지역을 대상으로 중금속 오염토양 내 미생물균집의 생태학적 특성을 대상으로 실험하였다.

재료 및 방법

1. 토양 시료의 추출 및 토양분석

공업지역이 밀집되어 있는 경상북도 내 23개 시, 군 지역 중 중금속 오염이 예상되는 293개 지역을 대상으로 토양시료를 채취하였다. 토양시험은 토양 표면으로부터 15 cm 이하에서 채취하고 곡물로 혼합한 다음 4℃의 온도에서 보관하였다.

분석항목은 중금속 6개 항목 (카드뮴, 구리, 비소, 수은, 낙, 6가 크롬)과 일반항목 2개 (시안물, 유황) 및 pH이며, 중금속 항목은 원자흡광도법을 이용하여 분석하였으며, 시안은 흡광광도법으로 그리고, 유황은 가스크로마토그래프법으로 분석하였다. (토양 측정은 오염도 조사. 환경)

2. 생균수 측정

중금속 오염토양 시료에 분산하는 세균수 측정을 위해 용증영양배지 (Nutrient Broth : beef extract 10 g, peptone 10 g, NaCl 5 g, pH 7.0)를 사용하였고, 공량이 제수에는 PDA (Potato Dextrose Agar, Difco)배지, 방선균 계수에는 방선균 선택배지인 SCA (Starch Casein Agar: MgSO4, 7H2O 1.02 g, Starch 10 g, Casein 1.0 g, K2HPO4 0.5 g, Cyclo-heximide 0.25g, pH 7.0) 배지를 이용하였다. 수은 내성 방선균 측정을 위해 HgCl2 (Mercury standard solution, Showa co., Japan)를 방선균 선택배지인 SCA 배지에 50 ppm과 100 ppm씩 각각 징파하여 28℃에서 10일간 배양한 후 퍼포.Fatal 실험을 수행한 결과를 측정하였다 (유 등 1997).

3. 방선균 분리 및 검량정 검정

100 mL의 밀균수에 1g의 토양을 넣고 homogenizer (Nikon Seiki Co., Tokyo)를 이용하여 15,000 rpm에서 2 분간 분산 처리하였다. 분산된 토양 현탁액을 순차적으로 회석한 상기의 방선균 선택배지를 사용하여 28℃에서 10일 이상 배양한 후 군층의 색과 현미경에서 군의 형태적 특성을 확인한 후 방선균을 순수분리하였다 (여 등 1996). 검량정 검정을 위하여 Gram 양성세균인 Staphylococcus aureus (ATCC 6538)와 Gram 음성세균인 Escherichia coli (IAM 1026)를 검량정주로 이용하여 중증배지를 준비하여, 중금속 오염토양으로부터 순수 분리된 방선균을 각각 총정하여 discriminat 중증배지에 의해 형성된 생유적지대의 유효 및 환의 크기를 통해 검량

4. DNA의 추출 및 정제

Chromosomal DNA의 분리는 Gram 양성세균 또는 방선균 DNA추출법 (김 등 2002)을 병행하여 수행하였다. 각 귀주를 50 mL의 starch-casein broth에 접종하고, 귀주

```
22k, Hanil., Co, Korea)을 이용하여 8,000 rpm에서 20분 동안 원심분리 하였다. 균체에 500 µL의 saline-EDTA buffer (0.15 M NaCl, 0.1 M EDTA, pH 8.0)를 담아 washing한 후 원심분리하여 상층액을 제거하고 200 µL의 extraction buffer (200 mM Tris-HCl, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, pH 8.0)를 추가하여 잘 혼합 시킨 후 산화 알미늄으로 소량 첨가하고 mixer (Motor cordless, Kontes., Co, USA)를 사용하여 2분간 간주었다. 50 µL의 10% sodium dodecyl sulfate (SDS)를 첨가한 후 60°C에서 5~10분간 반응시킨 후 원심분리하여 상층액을 새로운 tube로 옮기고 200 µL의 phenol을 첨가한 후 원심분리 하였다. 상층액에 50 µL chloroform을 넣어 2회 원심분리 했다. 최종적으로 얻은 상층액에 800 µL 냉동보존된 99% ethanol을 첨가한 후 -20°C에서 1시간 이상 저장하여 DNA를 증폭시켰다. 증폭된 DNA는 4°C에서 15,000 rpm으로 15분간 원심분리한 다음 진공 건조(Micro Vac MV-100, TOMMY)하였다. 최종적으로 50 µL의 밀균 중류수를 첨가하여 DNA를 추출하고 전기영동(Mupid-21, Gel documentation system, Bio-Rad)으로 확인하였다.

5. 16S rDNA의 PCR 중록

16S rDNA를 중록하기 위해서 E. coli 16S rDNA 부분의 conserved sequence를 기초로 하여 27F (5'-AGAGTTTGTATCTTGCCGCTCAG-3') primer와 1492R (5'-AAGGAGGTGATCCAGCAGCGCA-3') primer를 사용하였다 (Horada 1978; Klaassen 1980). 16S rDNA 중합효소 연쇄 반응 (polymerase chain reaction; PCR)를 위하여 추출된 DNA 1 µL (50 ~ 100 ng)에 27F primer, 1 µL; 1492R primer, 1 µL; Ex Taq polymerase, 0.25 µL; dNTP, 4 µL; 10X buffer, 5 µL; H2O, 37.75 µL로 0.2 mL의 PCR 반응 tube에 넣고 잘 혼합한 후 다음 단계에 따라 PCR (GeneAmp® PCR System 9700, Applied Biosystems) 반응을 실시하였다. 94°C, 6분간 반응한 다음 94°C, denaturation 1분, 55°C, annealing 1분, 72°C, extension 2분을 30회 반복하고, 72°C에서 10분간 final extension을 실시하였다. 16S rDNA를 확인하기 위해서 PCR 중류산물은 1%의 agarose gel (1 × TAE buffer; 40 mM Tris-acetate, 1 mM EDTA)를 사용하여 1 × TAE buffer에서 100 V, 25 mA로 30분간 전기 영동한 후 ethidium bromide (EtBr)로 20분간 염색하여 UV (Gel documentation system, Bio-Rad)에서 확인하고, PCR 정제 kit (Qiagen Inc.)을 이용하여 정제하였다. 정제된 16S rDNA는 분광광도계 (Spectrophotometer, UVIKON 930)를 이용하여 농도를 확인하였다.

6. 16S rDNA 염기서열 분석

정제한 16S rDNA를 추출한 B. PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems)을 사용하여 염기서열을 결정하였다. Sequencing PCR은 3µL (5'-AGAGTTTTGATCTTGCCGCTCAG-3') primer 1 µL, 16S rDNA sample 1 µL (90 ng)에 중량시 20 µL의 toad로 혼합된 3차 중류수를 sequencing PCR tube에 넣고 잘 혼합한 후 다음 조건에 따라 cycle sequencing 반응을 실시하였다. 96°C에서 30초, 45°C에서 30초 그리고 60°C 4분으로 25회 반복하였다. PCR 산물에 냉동 보존된 100% ethanol 50 µL와 3 M sodium acetate (pH 5.2) 2 µL를 첨가한 후 15,000 rpm에서 15분간 증폭시켰다. 250 µL의 70% ethanol로 세척하여 건조시킨 후 TSP (template suppression reagent) 20 µL를 첨가하여 95°C에서 2분 동안 denaturation 한 후 얼음수에 넣어 갱실했다.


결과 및 고찰

1. 토양 중금속 오염

실验 및 고찰 실험물에 의해 중금속오염이 예상되는 경상북도 293개 공업지역을 대상으로 카드뮴, 크리, 비스, 수은, 난, 가크롬, 사단 등 7중류의 중금속 함량과 오염 지도를 측정한 결과 공장집중지역 및 금속광산지역의 중금속 농도가 다른 지역에 비해 비교적 높게 나타났다 (Table 1).

본 연구에서는 중금속 오염이 높게 검출된 여러지역 중 7개 지역의 공장 및 금속광산 지역으로부터 토양 새 레를 체취하여 상기의 중금속 오염도와 pH를 분석하였다 (Table 2). 7개 지역은 토양 분석 결과 토양오염지역으로서 (2004. 환경부)에 비교하여 수온과 가크롬의 함량이 비교적 높게 검출되었으며, 특히 4개 지역(MK-20, MK-13, ML-5, MM-4)의 토양에서는 수온과 가크롬의 함량이 타 지역에 비해 매우 높게 검출되었고, 3개 지역 (MP-12, MF-142, MY-4)의 토양에서는 다른 지역에서 검출되지 않은 가크롬이 0.05 ~ 0.1 ppm 검출되었다.

---
Table 1. Physicochemical analysis of soil samples from Gyeongsangbuk-do area (Unit: mg/kg)

<table>
<thead>
<tr>
<th>Source</th>
<th>Investigation item</th>
<th>pH</th>
<th>Cd</th>
<th>Cu</th>
<th>As</th>
<th>Hg</th>
<th>Pb</th>
<th>Cr⁶⁺</th>
<th>CN</th>
<th>Oil</th>
<th>Number of area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imbrued the rivers</td>
<td>Low</td>
<td>4.4</td>
<td>0.000</td>
<td>0.480</td>
<td>0.000</td>
<td>0.000</td>
<td>1.05</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>8.3</td>
<td>0.470</td>
<td>11.280</td>
<td>0.400</td>
<td>0.039</td>
<td>10.00</td>
<td>0.00</td>
<td>0.06</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>6.0</td>
<td>0.133</td>
<td>3.873</td>
<td>0.075</td>
<td>0.012</td>
<td>3.98</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Liquid waste</td>
<td>Low</td>
<td>3.8</td>
<td>0.000</td>
<td>0.130</td>
<td>0.000</td>
<td>0.000</td>
<td>0.80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>56.6150</td>
</tr>
<tr>
<td>Factory and industry</td>
<td>High</td>
<td>9.7</td>
<td>0.840</td>
<td>44.225</td>
<td>0.388</td>
<td>0.054</td>
<td>60.00</td>
<td>0.15</td>
<td>0.29</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>6.5</td>
<td>0.152</td>
<td>4.028</td>
<td>0.050</td>
<td>0.009</td>
<td>5.33</td>
<td>0.00</td>
<td>0.01</td>
<td>3.7422</td>
<td></td>
</tr>
<tr>
<td>Used of special water</td>
<td>Low</td>
<td>5.3</td>
<td>0.065</td>
<td>2.360</td>
<td>0.036</td>
<td>0.005</td>
<td>0.65</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>7.1</td>
<td>0.370</td>
<td>42.955</td>
<td>0.238</td>
<td>0.144</td>
<td>12.90</td>
<td>0.05</td>
<td>0.00</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>6.6</td>
<td>0.166</td>
<td>10.968</td>
<td>0.131</td>
<td>0.037</td>
<td>5.58</td>
<td>0.02</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Solids waste</td>
<td>General waste</td>
<td>4.2</td>
<td>0.000</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
<td>20.383</td>
</tr>
<tr>
<td>reclamation erasure</td>
<td>Low</td>
<td>7.4</td>
<td>1.730</td>
<td>70.250</td>
<td>0.308</td>
<td>0.057</td>
<td>30.50</td>
<td>0.10</td>
<td>0.06</td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>5.9</td>
<td>0.125</td>
<td>3.512</td>
<td>0.039</td>
<td>0.013</td>
<td>3.88</td>
<td>0.00</td>
<td>0.00</td>
<td>1.547</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Designation</td>
<td>7.5</td>
<td>0.045</td>
<td>2.535</td>
<td>0.000</td>
<td>0.000</td>
<td>2.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>waste reclamation</td>
<td>Low</td>
<td>7.5</td>
<td>0.045</td>
<td>2.535</td>
<td>0.000</td>
<td>0.000</td>
<td>2.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>erasure</td>
<td>Average</td>
<td>7.5</td>
<td>0.045</td>
<td>2.535</td>
<td>0.000</td>
<td>0.000</td>
<td>2.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Metal mining</td>
<td>Low</td>
<td>4.1</td>
<td>0.000</td>
<td>0.835</td>
<td>0.000</td>
<td>0.000</td>
<td>1.25</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>6.8</td>
<td>0.635</td>
<td>73.300</td>
<td>1.050</td>
<td>0.651</td>
<td>89.00</td>
<td>0.05</td>
<td>0.13</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>5.2</td>
<td>0.238</td>
<td>9.523</td>
<td>0.255</td>
<td>0.065</td>
<td>14.53</td>
<td>0.00</td>
<td>0.03</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Heavy metal concentration of soil collected from polluted factory and industry area

<table>
<thead>
<tr>
<th>Soil sample</th>
<th>Source (region)</th>
<th>Cd</th>
<th>Cu</th>
<th>As</th>
<th>Hg</th>
<th>Pb</th>
<th>Cr⁶⁺</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK-20</td>
<td>Metal mine</td>
<td>0.64</td>
<td>8.5</td>
<td>0.6</td>
<td>0.65</td>
<td>21.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MK-13</td>
<td>Metal mine</td>
<td>0.21</td>
<td>7.16</td>
<td>0.25</td>
<td>0.29</td>
<td>10.25</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>ML-5</td>
<td>Special water</td>
<td>0.37</td>
<td>4.21</td>
<td>0.09</td>
<td>4.21</td>
<td>0.65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MM-4</td>
<td>Metal refinery</td>
<td>0.11</td>
<td>2.94</td>
<td>0</td>
<td>0.13</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MP-12</td>
<td>Reclamation and</td>
<td>0.17</td>
<td>4.58</td>
<td>0.04</td>
<td>0.04</td>
<td>3.95</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>incinerating facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MF-142</td>
<td>Factory and industry</td>
<td>0.1</td>
<td>0.77</td>
<td>0.08</td>
<td>0.08</td>
<td>2.6</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>MY-4</td>
<td>Scrap iron</td>
<td>0.16</td>
<td>13.28</td>
<td>0.32</td>
<td>0</td>
<td>19.1</td>
<td>0.05</td>
<td>0</td>
</tr>
</tbody>
</table>

2. 수은 및 6가크롬 오염토양 내 미생물 flora의 특성

본 연구에서는 수은과 6가크롬 오염이 심각한 7개 지역의 토양을 중심으로 이들 중금속 오염토양에 분포하는 미생물 flora특성을 검토하였다. 중금속 오염토양 중에서 분포하는 미생물 flora의 정량적 평가를 위하여 대규모 토양으로 산업 활동이 전무한 독도토양의 지화학적 특성을 판단한 보고(김 등 1986; 김 등 2000)에 의하여 싱기의 중금속 광질이 매우 낮은 농도로 검출되었다.

독도로부터 채취한 토양은 세균수는 1.1 x 10⁶ cfu g⁻¹ 이 측정되었고, 수은 오염토양 중에는 1.0 x 9.4 x 10⁶ cfu g⁻¹, 6가크롬 오염토양 중에는 7.4 x 10⁶ ~ 9.4 x 10⁶ cfu g⁻¹ 이 측정되어 대규모 토양에 비해 10~100배 이상 낮은 세균밀도를 나타내었다.

수은 오염토양 내 골팡이수는 1.0 x 10⁴ ~ 1.7 x 10⁵ cfu g⁻¹으로 대규모 토양에 비해 10~100배 이상 낮은 농도를 나타내었고, 6가크롬 오염토양의 경우 골팡이는 거의 검출되지 않았다. 이와 같은 결과로부터 6가크롬 오염토양 중 6가크롬에 대한 내성을 갖는 골팡이가 매우 적게 분포해 있다고 판단되었다.

한편, 방산균수는 수은 오염토양의 경우 6.7 x 10⁴ ~ 7.5 x 10⁷ cfu g⁻¹이 측정되어 대규모 토양에 방산균수가 비슷한 분포율을 나타내었으며, 6가크롬 오염토양 내 방산균수는 4.8 x 10⁴ ~ 5.0 x 10⁷ cfu g⁻¹이 측정되었다(Fig. 1). 이와 같은 결과로부터 수은 및 6가크롬 오염토양 내 방산균밀도가 다른 미생물에 비해 높은 분포율을 나타내어 수온에 대한 내성을 갖는 방산균이 오염토양 중에 다수 분포해 있음을 추정하였다.

수은 오염의 심한 2개 지역(MK-20, MM-4)에서 채취한 토양 시료에 대해 수은 내성을 나타내는 방산균 수
Fig. 1. Comparison of the number of microflora. The samples were collected from mercury and chrome polluted soil at Gyeongsangbuk-do.

Fig. 2. Comparison of the number of actinomycetes on HgCl₂ added to the SCA medium.

Table 3. Number of antibacterial isolates collected from heavy metal polluted soils.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total isolate</th>
<th>S. aureus (ATCC 6538)</th>
<th>E. coli (IAM 1026)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polluted by Hg²⁺</td>
<td>50</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Polluted by Cr⁶⁺</td>
<td>100</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

4. 수온 및 6가크롬 오염토양으로부터 분리된 방선균의 계통학적 특성

수온 및 6가크롬 오염토양 중 다른 미생물 개체군에 비해 비교적 높은 분포율을 나타낸 방선균군의 특성을 검토하였다. 방산균 선박배치 (SCA)를 사용하여 수온 오염토양으로부터 방산균 50군주, 6가크롬 오염토양으로부터 100군주를 각각 분리하여 질병균 Escherichia coli와 Staphylococcus aureus에 대한 감염력을 조사하였다. 그 결과, S. aureus에 금형력을 가지는 균형은 수온 오염토양에서 5군주, 6가크롬 오염토양에서 11군주가 선발되었으며, E. coli에 금형력을 갖는 군주는 수온 오염토양에서 6군주, 6가크롬 오염토양에서 15군주가 선발되었다. 그리고 Gram양성 및 음성의 검정균군 모두에서 금형력을 나타낸 군주는 6군주이었다 (Table 3).
(Fig. 3).


본 연구에서 분리된 방산균 군주는 모두 세소를 가 지고 있었으며 기균사를 형성하였다. 이 군주는 강한 항균 활성과 고농도의 수은에 내성을 나타내었으며, 16S rDNA 염기서열 분석결과MF142-1, MF142-11, MF142-15, MF142-17, MM4-11 그리고 MM4-17군주는 기준의 Streptomyces 참고군주들과 97%의 상동성이 확인되었다. 특히 Strain MM4-11과 Strain MM4-17 군주는 고농도의 수은에 내성을 나타내며 강한 항균활성능을 갖는 군주 로 보다 세밀한 세균학적 정보에 관한 검토를 수행할 계획이다. 이들 군주의 특성이 밝혀진다면 중금속 오염이 극심한 공장 및 공업지역의 토양 환경 복원에 활용 될 수 있는 군주개발이 이루어질 수 있을 것으로 기대 한다.
적 요

정상복도내의 금주발생, 공장 및 공업지역의 보양만의 오염토를 조사하고 공주 오염토양 중에 분포하는 미생물 flora의 정량적 평가를 위하여 청정지역의 독토로 앙과 비교한 결과, 일반인의 경우 10~100배에 낮은 분포율을 나타내었으며, 6가크롬 오염토양 중 공주는 거의 검출되지 않았다. 방신균은 온 외 오염토양의 경우 6.7×10^4~7.5×10^5 cfu g^-1, 6가크롬 오염토양 내 방신균 수는 4.8×10^4~5.0×10^6 cfu g^-1이 측정되어 대조군 오양 내 방신균 분포와 비슷한 높은 분포율을 나타내었다. 수은 오염토양 시료물 HgCl₂ 50ppm을 각각 청정화 배지에 접종하여 방산균수를 측정한 결과 대조군 오양 내 방산균 분포와 비슷한 수준을 확인하였다. 수은 및 6가크롬의 오염토양으로부터 분리된 방산균 150 군주에 대해 항균력을 검토한 결과 31군주가 항균공분을 나타내었다. 이들 방산균 중 강한 항균화학성을 나타낸 10군주를 선택하여 계통학적 특성을 검토한 결과 Streptomyces 속, Saccharopolyspora 속, 그리고 Nocardioides 속에 속하는 3개의 계통군으로 분류되었다. 이들 분리균 주중에는 거기 미생물과 97% 이하는 낮은 상호성을 나타내는 신균류생물도 다수 포함되어 있었다. 이상의 결과로부터, 본 연구로서 조사된 수은 및 6가 크롬 오염토양내 공주균 내성 및 항균활성을 갖는 방산균이 높게 분포해 있음을 확인하며, 낮은해성 항화학을 포함한 다양한 구조의 유해 독성물질의 임질작용으로 인한 공주 오염토양내 환경의 복원이 최적적으로 이루어 질 수 있을 것으로 기대되었다.

사 사

본 연구는 농촌진흥청 바이오그린21사업의 지원을 받아 수행되었으며 이에 감사드립니다.

참고 문헌

고영희, 민태혁, 오태광, 문병태, 이강택, 김성숙. 1991. 생태환경
성질을 이용한 미생물의 분리에 관한 연구 (I). 과학기술의 연구보고서, BS7011-295-3.
김규현. 2000. 독도 억류 화학학습의 K-Ar 연대와 Nd-Sr
조성, 지질학회지, 36:313-324
김소양, 박진호, 전요성, 임재영, 김정권, 이상화, 김창진. 1996. 국내 분리
방산균의 항균활성 특성, 한국미생물
생명공학회지, 24:166-172.
梁允佐, 吉村武義, 李大聲, 青木廉一郎. 1986. 獸島火山噴出物
김현야, 배병한, 정윤정, 이인숙. 2002. 청평산 및 석물의 중
금속 세포에 관한 연구, 한국생태학회지, 25:7-14.
박영석, 이기성, 황갑진. 1992. 금강 수역 내 미생물군집의
유기물 분해능과 자정, 한국생물학회지, 25:151-166.
여운형, 유봉식, 황경수, 이정목, 윤성현. 1996. Micrococcus
sp. SA-246 군주가 생산하는 Isocharracem quaternion계 항
생물질, 한국미생물생명공학회지, 24:321-326.
유경만, 정희근, 박춘봉, 이인수, 박진숙, 하남주, 박용근. 1997. 대전 지역의 공단 폐수에서 분리한 수은과 카드
암 내성 세균의 분리 및 특성 한국환경과학회지, 6:249-
258.
이기성, 고동규, 최창호, 오대열, 박영식, 최정일, 최용길. 1993. 금강수역내 항생제 및 항균내성균의 분리 및
동시대성분도 환경생물, 11:131-144.
조도연, 김춘호. 1995. 수중 초본 식물의 항균내성에 관
한 연구, 한국생태학회지 18:147-156.
Antai SP and D Crawford. 1982. Degradation of phenol by
accumulation and tolerance in British population of the met-
allophosphate Thalassia caeruleaescens J & C. Presel (Brassicae).
New Phytol. 129:61-68.
Champannec WC and KF Chater. 1994. Regulation and integ-
rative antibiotic production and differentiation in Strept-
Youngman (eds.), Regulation of bacterial differentiation,
American Society for Microbiology, U.S.A.
press. London.
Crawford D, J Doyle, Z Wang, C Hendricks, S Bentjen, H
Bolton, J Fredrickson and A Bleakley. 1993. Effects of a
lignin peroxidase-expressing recombinant Streptomyces
lividus TK23.1, on biogeochemical cycling and the
numbers and activities of microorganisms in soil. Appl. Environ.
Microbiol. 59:508-518.
Foster TJ. 1983. Plasmid-determined resistance to anmi-
ticidal drugs and toxic metal ions in bacteria. Microbi-
ology 30:772-779.
Hopwood DA. 1988. Towards an understanding of gene
switching in Streptomyces, the basis of sporulation and
antibiotic production. Proc, R. Soc. Lond. Ser. B235: 121-
138.

Horada M. 1978. Methyl mercury poisoning due to environmental contamination (Minamata disease). pp. 261. In Toxicity of heavy metals in the environmental. Marcel Dekker. USA


Manuscript Received: June 29, 2005
Revision Accepted: September 21, 2005
Responsible Editorial Member: Seung Bum Kim (Chungnam Univ.)