생물학적 질소 제거(Biological nitrogen removal; BNR) 시스템의 효율적인 처리 공정을 이해하기 위하여 질산화 반응층 내 세균 군집 구조를 16S rRNA 유전자와 PCR 및 terminal restriction fragment length polymorphism (T-RFLP) 방법을 이용하여 분석하였다. 본 연구에서 사용한 BNR 시스템은 국내에서 비교적 많이 적용되고 있는 부상여제를 이용한 고도처리 시스템, Nutrient Removal Laboratory 시스템, 반추처리법을 이용한 영양영류 처리 Sequencing Batch Reactor (SBR) 시스템이었다. 실험 결과 모든 시료에서 암모니아 산화 세균과 β-proteobacteria 에 해당하는 밀라 단원을 확인할 수 있었다. 암모니아 산화 세균 군집에서 페수처리 단원의 염기서열을 분석한 결과 SBR 공정에서는 Nitrosomonas와 Nitrosoolum에 속하는 군집이 주조를 담당할 수 있었다. 그러나 다른 두 공정에서는 β-proteobacteria에 속하는 미생물의 경우와 Cardiacoccus australiensis와 염기서열 유사도가 높 은 군집이 동정되었다. 또한, 암모니아 산화세균 군집을 분석한 결과, SBR 공정이 암모니아 산화 세균의 능력이 억 앙에 가장 적절한 것으로 나타났다. 이러한 결과는 각 BNR 시스템에 동일한 접수가 유입되었음에도 불구하고 서로 다른 세균 군집 구조를 형성하고 있음을 의미한다.

Key words □ 16S rRNA, ammonia-oxidizing bacteria, biological nitrogen removal, T-RFLP

*To whom correspondence should be addressed.
Tel: 043-261-3261, Fax: 043-264-9600
E-mail: donghun@chungbuk.ac.kr
재료 및 방법

시료 채취 및 혈산 추출

실형 실험이로 제작한 3 종류의 Biological Nitrogen Removal (BNR) 시스템, 즉 부식예를 이용한 고도처리 시스템, NRL 시스템, SBR 시스템으로부터 질산화반응이 일어나는 반응조의 세균을 채취하였다(Fig. 1). 각 BNR 시스템에 유입되는 폐수는 주시 하수종말처리장의 유입폐수였으며, 모든 일정기간 이상 시

운전하여 안정화된 후에 시료를 채취하였다.

채취한 시료의 혈산은 추출하기 위하여 Miler 등(17)의 bead beating 방법을 다음과 같이 변형하여 이용하였다. 먼저 원심분리(14,000g, 10분, 4°C)로 농축된 용액시료의 담채시료에 0.1 mM zirconia glass bead (Biospec, USA) 0.5 g, phosphate buffer (100 mM NaH₂PO₄, pH 8.0) 300 μl, SDS solution (10% w/v) 300 μl, chloroform: isomylalcohol (24:1) 300μl를 넣고, microtube mixer (TOMY SEIKO, Japan)를 이용하여 5분 동안 bead beating 하였다. 원심 분리(14,000g, 15분, 4°C) 한 후, 상층액을 취하여 phenol: chloroform:isomylalcohol (25:24:1)과 chloroform:isomylalcohol (24:1)을 순서대로 각 1회 처리하였다. 상층액에 동량의 cold isopropanol과 sodium acetate (최종 농도 0.3 M)를 첨가하고 -20℃에서 2시간 이상 방치하여 혈산을 천천히 색간시켰다. 원심 분리(14,000g, 30분, 4°C) 한 후, 암만으로 세척하고 건조처리 혈산 청소물을 얻었다. 추출된 혈산은 TE 완충액(10 mM Tris-HCl, 1 mM EDTA, pH 8.0)으로 녹인 후, 0.8% agarose gel에서 전기 방출하여 확인하였으며 Ultracean™ DNA Purification kit (MO BIO, USA)로 정제하여 -20°C에서 보관하였다.

T-RFLP 분석을 위한 혈산의 증폭

16S rRNA 유전자 증폭에 이용된 eubacterial primer는 27F (E. coli numbering 8-27 : 5'-AGAGTTTGATCMTTGGCTCAG-3')와 785R (E. coli numbering 785-804 : 5'-ACTACGGRATATTGG-3')을 사용하였다(7, 12). 또한 Ammonia-oxidizing bacteria (AOB)의 16S RNA 유전자 증폭에 이용된 specific primer는 27F와 NsoI225R (E.coli numbering 1225-1244 : 5'-CGCCATTGATTACGTTGTA-3')을 사용하였다(4). T-RFLP 분석을 위하여 27F와 biotinylated primer (27FB)를 사용하였다. PCR 반응물의 조성은 1X 반응용액(100 mM Tris-HCl, 400 mM KCl, 1.5 mM MgCl₂, 500 μg/ml BSA, pH 8.3), 160 μM dNTPs, 0.3 μM primer, 주형 혈산(10-100 ng/μl)의 1.5 unit의 Taq polymerase를 첨가하여 총 50 μl의 혼합액을 만들었다. PCR 반응조건은 94°C에서 3분간 초기 열처리한 후, 94°C에서 30초, 785R primer는 58°C, NsoI225R primer는 52°C에서 30초, 72°C에서 1 분씩 30회 반복하고, 마지막에는 72°C에서 10분간 열처리한 후 반응을 중단시켰다. PCR product는 0.8% agarose gel에서 전기영동하여 확인하였으며, Ultracean™ DNA purification kit (MO BIO)로 정제 후 -20°C에서 보관하였다.

16S rDNA T-RFLP 분석

PCR 산물에 세균효소 HaeIII, Hhal (TaKaRa, Japan) 5 unit을 각각 첨가하여 37°C에서 3시간 동안 반응시켰다. 세균효소에 의해 절단된 DNA에 0.5x SSC 완충액(75 mM NaCl, 7.5 mM sodium citrate, pH 7.3)으로 3회 세척한 streptavidin paramagnetic particle (Promega, USA)와 1x SSC를 첨가하여 80°C에서 10분 동안 반응시켰다. Magnetic stand로 분리된 streptavidin paramagnetic particle은 0.1x SSC 완충액으로 4회 세척 후,
0.2 N NaOH을 첨가하여 5분간 반응시키고, 다시 0.2 N NaOH을 첨가하여 2분간 반응시킨 뒤, biotin이 붙은 single-stranded DNA T-RF (ss-TRF)만을 회수하였다. 25% NH₄OH를 넣고 65°C에서 10분간 반응시켜 streptavidin으로부터 DNA를 분리시켰다. 원실분리(14,000rpm, 4분, 4°C)하여 상층액만 취한 후, 20분 동안 건조 건조하여 암모니아를 제거하였다. T-RF profile은 6% polyacrylamide gel에서 전기영동하여 확인하였다. 시료 3 μl과 loading dye buffer (95% formamide, 10 mM NaOH, 20 mM EDTA, 0.02% bromophenol blue, 0.02% xylene cyanol FF) 1.5 μl를 채어 3분 동안 95°C에서 열처리 시킨 후, 얼음에 싶었다. 1× TBE 환경 용액(90 mM Tris-borate, 2 mM EDTA, pH 8.0)으로 완충된 6% polyacrylamide gel (acylamide : bisacrylamide = 19:1, 0.7 M urea)에서, 1900 V로 HaeIII 처리시 3시간, Hha이 처리시 2시간 동안 전기영동하였다. 전기영동이 끝나면 10% acetic acid로 30분 동안 고정한 후, 3차 증류수로 3회 세척하고, silver staining solution (0.1% AgNO₃, 0.055% formaldehyde, Na₂S₂O₃, 2.0 mg/ml)로 발색 반응 후 10% acetic acid를 처리함으로써 반응을 정지시키고 3차 증류수로 2회 세척하였다. GelCompar II program (Applied Maths, Belgium)를 이용하여 각 T-RF pattern을 Pearson 방법으로 상관관계를 분석하고, UPGMA (21) 형태의 dendrogram을 작성하였다. 또한 T-RF 자료로 Richness (S), Shannon-Weiner diversity index (H)를 계산하였다(6).

암모니아 산화 세균 T-RF 염기서열 분석 방법

암모니아 산화 세균의 T-RF의 염기서열을 분석하기 위해 amplified fragment length polymorphism (AFLP) 방법(24)을 적용하였다. 제한 효소 HhaI (TaKaRa, Japan)에 의해 클론화된 PCR 산물은 0.2 N NaOH 반응 과정만을 계획하여 ss-TRF 분리와 동일하게 double-stranded DNA T-RF (ds-TRF)만을 회수하였다. 분리된 ds-TRF에 HhaI-adapter를 ligation한 후, 27FB와 adapter (A2) primer 뱀으로 PCR 증폭하였다. HhaI-adapter는 A1 primer (5'-CGATCGAGATCTACTGATC-3')과 A2 primer (5'-GAC TAGAGTACA CTGTCGAGCGG-3') 뱀 각각 25 μM씩 첨가 후, 95°C에서 10분 반응 후, 상온에서 20분 반응하여 제거하였다. 2차 PCR 산물로부터 다시 streptavidin paramagnetic particle (Promega, USA)를 이용하여 ss-TRF를 분리한 후, 6% polyacrylamide gel (acylamide : bisacrylamide = 19:1, 0.7 M urea, 1× TBE)에서 전기영동하여 확인하였다. 주요 T-RF band는 밀균 레 주사기 바늘로 잠재내어, 밀균된 3차 증류수로 넣고 30°C에서 12시간 교반시켰다. 상층액을 주형으로 하여 27FB와 A2 primer 뱀으로 증폭된 PCR 산물을 pGEM-T vector (Promega, USA)를 이용하여 cloning 하였다. 채취한 플론을 선발한 후, plasmid DNA를 추출하여 BaseStation™ DNA Fragment Analyzers (MJ Research, USA)로 염기서열을 분석하였다.

결 과

정전세균의 군집 분석

세 가지 BNR 시스템에서 16S rRNA 유전자를 이용하여 T-RFLP 분석을 하였다(Fig. 2). HaeIII를 처리한 T-RF profile에서 네 가지 BNR 시스템의 유역시료와 담체시료에서 모두 공통적으로 우점하는 221 bp, 담체시료에서만 우점하는 264 bp의 T-RF를 관찰하였다. 두 가지 시료의 총 DNAs의 혼합시료에서는 252 bp의 T-RF가 관찰되었다. NRL 시스템과 SBR 시스템의 시료에서는 219 bp의 T-RF를 관찰하였고, NRL 시스템의 유역시료에서는 201 bp의 T-RF가 관찰되었다. 16S

Fig. 2. PAGE and cluster analysis of HaeIII and HhaI T-RF profiles of the eubacterial communities in 3 BNR systems. NRL1S; Solution of NRL oxic tank 1, NRL2S; Solution of NRL oxic tank 2, NRL1M; Media of NRL oxic tank 1, NRL2M; Media of NRL oxic tank 2, R2M; Reactor 2 media of an advanced treatment system with plotting media, R4M; Reactor 4 media of an advanced treatment system with plotting media, R4S; Reactor 4 solution of an advanced treatment system with plotting media, R2S; Reactor 2 solution of an advanced treatment system with plotting media, SBRM; Media of Sequencing Batch Reactor oxic tank.
rRNA 염기서열 database의 자료를 분석한 결과에 의하면, 264 bp의 T-RF는 Nitrospira, Desulfitomaculum, Hydrogenobacter 등이 포함된 분류군에서 관찰이 가능하고, 252 bp의 T-RF는 Acinetobacter, Chlorobium 등에서 생성이 가능하며, 221 bp의 T-RF는 주로 Nitrosomonas, Azurarcus, Burkholderia 등이 포함된 β-Proteobacteria에서 관찰이 가능하다. 219 bp의 T-RF는 Nitrosospira, Aquaspirillum, Comamonas 등이 포함된 β-Proteobacteria와 Firmicutes 계열에서 생성이 가능하며, 201 bp의 T-RF는 β-Proteobacteria, Bacteroidetes, Planctomycetes 계열의 광범위한 분류군에서 관찰이 가능하다.

HhaI를 처리한 T-RFs profile에서는 세 BNR 시스템의 용액시료와 담체시료에서 모두 364~367 bp, 205 bp, 116 bp의 T-RF를 관찰하였다. 부상여제를 이용한 시스템의 담체시료에서는 197 bp의 T-RF, NRL 시스템의 시료에서는 565~568 bp의 T-RF가 다른 시스템에서 보다 높은 비율로 존재하였다. NRL 시스템의 시료에서도 151 bp의 T-RF가 관찰되었다. 565~568 bp의 T-RF는 주로 β-Proteobacteria, Firmicutes 등에서 관찰이 가능하며, 364~367 bp의 T-RF는 β-Proteobacteria, Actinobacteria 등에서 생성이 가능하다. 205 bp의 T-RF는 β-Proteobacteria, Comamonas, Firmicutes, Bacteroidetes가 포함된 분류군에서 관찰할 수 있고, 197 bp의 T-RF는 Brevibacillus, Flavobacterium, Pirellula 등에서 생성이 가능한다. 151 bp의 T-RF는 Cardococcus, Frankia, Paenibacillus 등에서 관찰이 가능하고, 116 bp의 T-RF는 Lactobacillus와 같은 서식이 가능하다. HaeIII와 HhaI를 처리하였을 때 공통으로 관찰 가능한 군은 Nitrosomonas, Nitrosoflosus 등의 알로마이 산화 세균과 Algaligenes, Aquaspirillum, Comamonas, Clostridium, Dechloromonas, Pseudomonas, Rhodococcus, Thiobacillus 등의 군이었다. 따라서 이들은 질산화용소에서 높은 수준으로 존재하며 주요 군집을 형성하고 있는 분류군이라 추정된다. HaeIII와 HhaI를 처리한 시료의 T-RF profile는 휘발성 물질 분석(cluster analysis)을 한 결과, 각 시스템 별로 구분되는 결과를 이루었다(Fig. 2). 특히 용액시료와 담체시료는 각각 나뉘었다. 부상여제를 이용한 시스템의 경우는 담체시료가 58.9%의 유산도, 용액시료는 28.7%의 유산도를 보였으며 용액시료와 용액시료는 21.1% 수준에서 하나의 결과를 형성하였다. 이는 담쇄 NRL 시스템의 경우는 용액시료가 55.4%의 유산도를 보이며 볼레 73%였으며 12.6%의 수준에서 담체시료가 높았다. 각 시스템은 다른 시스템과는 매우 낮은 유사도를 보였으며, 이를 통해 각 BNR 시스템에서 동일한 편차가 유입되었음을에도 불구하고 서로 다른 분산 군집 구조를 형성하고 있으며, 같은 시스템 내에서는 용액시료와 담체시료 간에도 서로 다른 군집 구조를 보이는 것을 확인할 수 있었다.

T-RF profile를 이용하여 군집의 다양성을 계산하였다(Table 1). 종 T-RF의 수(richness, S)는 HaeIII profile는 21-32개, HhaI profile는 20-32개였고, 다양성 지수(Shannon-Weiner diversity index, H)는 HaeIII profile는 3.72-4.84, HhaI profile는 4.03-7.2로 나타났다. HaeIII profile의 경우 각 반응기의 용액시료가 담체시료보다 더 높은 다양성 지수를 보였으며, 부상여제를 이용한 시스템의 reactor 2와 NRL 시스템의oxic tank 1 시료는 각각 공통 구조에 위치한 reactor 4와 oxic tank 2 시료보다 더 높은 다양성 지수를 보였다. HaeIII와 HhaI의 경우 NRL 시스템의oxic tank 1 시료는 각각 공통 구조가 높은 다양성 지수를 보였고, 부상여제를 이용한 시스템의 reactor 2와 NRL 시스템의oxic tank 1 시료는 각각 공통 구조가 높은 다양성 지수를 보였다. 다양한 지수가 가장 높은 시료는 NRL 시스템의oxic tank 2의 담체시료였고, 가장 높은 시료는 부상여제를 이용한 시스템의 reactor 4의 용액시료였다. HaeIII와 HhaI의 다양한 지수의 평균값을 살펴보면 부상여제를 이용한 시스템은 용액시료와 담체시료 사이의 다양한 지수의 차이가 컸으며, reactor 2가 reactor 4보다 높은 다양한 지수를 보았다. NRL 시스템의oxic tank 1은 용액시료가 담체시료보다 낮은 다양한 지수를 보였으며, oxic tank 2는 용액시료와 담체시료 사이에 떨어진 차이를 보이지 않았다. 전체적인 다양한 지수를 비

<table>
<thead>
<tr>
<th>Samplea</th>
<th>HaeIII-Sb</th>
<th>HaeIII-Hc</th>
<th>HhaI-Sd</th>
<th>HhaI-He</th>
<th>Average-He</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2S</td>
<td>32</td>
<td>4.84</td>
<td>23</td>
<td>4.31</td>
<td>4.58</td>
</tr>
<tr>
<td>R2M</td>
<td>27</td>
<td>4.39</td>
<td>22</td>
<td>4.11</td>
<td>4.25</td>
</tr>
<tr>
<td>R4S</td>
<td>29</td>
<td>4.67</td>
<td>20</td>
<td>4.03</td>
<td>4.35</td>
</tr>
<tr>
<td>R4M</td>
<td>21</td>
<td>3.99</td>
<td>24</td>
<td>4.09</td>
<td>4.14</td>
</tr>
<tr>
<td>NRL1S</td>
<td>23</td>
<td>4.16</td>
<td>21</td>
<td>4.09</td>
<td>4.13</td>
</tr>
<tr>
<td>NRL1M</td>
<td>24</td>
<td>3.98</td>
<td>30</td>
<td>4.65</td>
<td>4.32</td>
</tr>
<tr>
<td>NRL2S</td>
<td>21</td>
<td>4.08</td>
<td>26</td>
<td>4.38</td>
<td>4.23</td>
</tr>
<tr>
<td>NRL2M</td>
<td>22</td>
<td>3.72</td>
<td>32</td>
<td>4.72</td>
<td>4.22</td>
</tr>
<tr>
<td>SBRM</td>
<td>23</td>
<td>4.29</td>
<td>27</td>
<td>4.51</td>
<td>4.40</td>
</tr>
</tbody>
</table>

aSampling site : R2S; Reactor 2 solution of an advanced treatment system with plotting media, R2M; Reactor 2 media of an advanced treatment system with plotting media, R4S; Reactor 4 solution of an advanced treatment system with plotting media, R4M; Reactor 4 media of an advanced treatment system with plotting media, NRL1S; Solution of NRL oxic tank 1, NRL1M; Media of NRL oxic tank 1, NRL2S; Solution of NRL oxic tank 2, NRL2M; Media of NRL oxic tank 2, SBRM; Media of Sequencing Batch Reactor oxic tank
bRichness (S) = number of distinct T-RF in a profile
cShannon-Weiner diversity index(H) = -Σ(Pi)(log(Pi))
Pi is the proportion of an individual peak height.
교해 보면, SBR 시스템이 다른 시스템에 비해 더 다양성 지수가 가장 높았으며, NRL 시스템은 가장 낮은 다양성 지수를 보였다.

알모리아 산화 세균의 군집 분석
알모리아 산화 세균의 세균군집을 분석하기 위하여 27FB primer와 Nso1225R specific primer를 이용하였다(Table 3). T-RF pattern을 분석한 결과 565-568 bp, 364-367 bp, 205 bp의 T-RF는 진정세균 군집 분석과 알모리아 산화 세균 군집 분석을 통해 모두 관찰할 수 있었던 주요 군집으로 질산화작용을 일으키는 주요 세균군이라 생각된다. 반면에 Actinobacteria 계열에 서생 가능한 442-446 bp의 T-RF와 Cardovoccus, Frankia, Paenibacillus에 의해 관찰 가능한 151 bp의 T-RF는 NRL 시스템에서만 관찰되었다. 특히 151 bp의 T-RF는 진정세균의 군집을 분석했을 때에도 NRL 시스템에서만 관찰할 수 있었던 군집이었다. 알모리아 산화 세균 군집 분석을 통해 관찰 가능한 주요 군집은 부식요제를 이용한 시스템, NRL 시스템, SBR 시스템의 진정세균의 군집에서 각각 19.03%, 21.48%, 23.85%의 비율을 차지하였다.

긴기시험 분석이 가능한 T-RFLP 방법을 이용하여 세 BNR 시스템에서 공동적으로 확인된 565-568 bp, 364-367 bp, 205 bp, NRL 시스템의 151 bp의 band를 get에서 분리하여 연구시행을 분석 하였다(Table 2). 그 결과 부식요제 이용한 시스템 reactor의 담체로서의 565 bp의 T-RF는 Aquaspirillum과 94%, 364 bp의 T-RF는 Nitrosomonas와 98%, 205 bp의 T-RF는 β-Proteobacteria 계열의 uncultured bacterium과 94%의 유사도를 갖는 서바이하였다. NRL 시스템 oxide tank 1 담체로서의 568 bp의 T-RF는 uncultured beta proteobacterium과 93%, 365 bp의 T-RF는 uncultured bacterium과 94%, 205 bp의 T-RF는 Aquaspirillum과 84%, NRL 시스템에서만 관찰되었던 151 bp의 T-RF는 Cardovoccus와 95%의 유사도를 갖는 서바이었다. SBR 시스템 담체로서의 568 bp의 T-RF와 367 bp의 T-RF는 Nitrosomonas sp. JL21과 94% 이상, 205 bp의 T-RF는 Nitrosolobus multiformis와 100%의 유사도를 갖는 서바이었다. 긴기시험 분석 결과 알모리아 산화 세균이라 추정되었던 T-RF를 갖는 세 BNR 시스템 중에서 SBR 시스템과 부식요제를 이용한 시스템에서만 Nitrosomonas, Nitrosolobus 속과 유연관계가 있는 서바이가 확인되었다.

고찰
T-RFLP 분석법은 마릴세균 구조 분석을 위한 분자생물학적 기법으로 최근까지도 세균군집의 연구에 많이 이용되고 있다(23). Regan 등(20)은 nested PCR를 이용한 T-RFLP 방법은 수목산물영양으로 알모리아 산화 세균인 Nitrosomonas와 Nitrospira 사이의 구별과 아질산 산화 세균인 Nitrobacter와 Nitrospira의 검출을 만들고 효과적인 패가 있다고 보고하고 있다.

본 연구에서는 세 종류의 BNR 시스템에서 질산화방응을 일으키는 부식요제로 사용해본 세균 군집 구조를 분석하기 위하여 T-RFLP 방법을 이용하였다. 분석 결과, Huella과 Hifl배르 구조의 담체로서 공동으로 관찰 가능한 주요 군집은 Nitrosomonas, Nitrosolobus 등의 알모리아 산화 세균과 Algalgenes, Aquaspirillum, Comamonas, Clostridium, Dechlororubina, Pseudomonas, Rhodococcus, Thiobacillus로 추정되며, Clostridium과 Pseudomonas을 제외하고는 모두 β-Proteobacteria 분류군 속에 속하는 것을 알 수 있었다(Fig. 2). 각 군집은 통해서 알 수 있듯이 유입된 폐수의 강도에 과도한 코스팅에 따라 서식 환경의 변화에 따라서 서로 다른 군집이 형성되어 각 시스템 별로 구분되었다. 또한 관찰 유사도 혹은 동일한 유사도로 담체의 서바이의 차이가 더 커져 있는데 이는 부식 요제와 부식 성장 공간 간의 구조 차이가 더 크게 나타나 적용되었다.

Tsuneda 등(22)에 의하면 DGGE 방법을 이용한 aerobic upflow fluidized bed (AUFB)에서의 질산화세균을 분석 한 결과 Nitrosomonas에 유사한 세균이 관찰되었으며 보고한 바 있고, Kindaichi 등(10)은 질산화방응이 일어나는 biofilm에서 Nitrosospira, Nitrosponomas와 유사한 세균이 각각 39%와 25%을 차지하고 있음을 밝혔다. 본 연구에서도 27FB와 Nso1225R primer를 이용하여 T-RFLP 방법을 통한 알모리아 산화 세균의 군집구조를 분석하였다(Fig. 3). 그 결과, Hifl를 처리한 진정세균과 군집 분석을 통해서 알 수 있었던 세 BNR 시스템에서 존재하는 565-568 bp, 364-367 bp, 205 bp의 T-RF는 알모리아

<table>
<thead>
<tr>
<th>Sample</th>
<th>Length of T-RF (bp)</th>
<th>Closest Microorganism (accession number)</th>
<th>Similarity(%)</th>
<th>Phylum</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2M-1</td>
<td>565</td>
<td>Aquaspirillum arcticum (AB074525)</td>
<td>94</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>R2M-2</td>
<td>364</td>
<td>Nitrosomonas sp. Is32 (AJ621027)</td>
<td>98</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>R2M-3</td>
<td>205</td>
<td>Uncultured bacterium clone from the denitrifying reactor (AJ412627)</td>
<td>94</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>NRL1M-1</td>
<td>568</td>
<td>Uncultured beta proteobacterium clone from the river (AJ421928)</td>
<td>93</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>NRL1M-2</td>
<td>365</td>
<td>Uncultured bacterium clone from the groundwater (AY662045)</td>
<td>94</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>NRL1M-3</td>
<td>205</td>
<td>Aquaspirillum serpentis (AB074518)</td>
<td>84</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>NRL1M-4</td>
<td>151</td>
<td>Cardovoccus australiensis (AY007722)</td>
<td>95</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>SBRM-1</td>
<td>568</td>
<td>Nitrosomonas sp. JL21 (AB000700)</td>
<td>94</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>SBRM-2</td>
<td>367</td>
<td>Nitrosomonas sp. JL21 (AB000700)</td>
<td>98</td>
<td>β-Proteobacteria</td>
</tr>
<tr>
<td>SBRM-3</td>
<td>205</td>
<td>Nitrosolobus multiformis (L35509)</td>
<td>100</td>
<td>β-Proteobacteria</td>
</tr>
</tbody>
</table>

*Sample: R2M, Media of reactor 2 in advanced treatment system with plotting media, NRL1M, Media ofoxic tank 1 in NRL system, SBRM, Media of oxic tank in Sequencing Batch Reactor system
기상학적 분석 시 모든 처리과정에서 완전하였다. 442–446 bp와 151 bp의 T-RF는 NLR 시스템에서만 관찰할 수 있었던 군집이었으며, 특히 151 bp의 T-RF는 진정세균의 군집 분석 결과 마찬가지로 암모니아 산화 세균 군집 분석에서도 NLR 시스템에서만 관찰되었다. 이는 부상양체를 이용한 시스템과 SBR 시스템과 연관된 방식이 다른 NLR 시스템에서만 존재하는 유전자 집합이라 생각된다.

암모니아 산화 세균이란 추정되는 군집의 바람을 진정세균 군 집에서 살펴보면, 부상양체를 이용한 시스템의 전한 반응조와 후 단 반응조가 각각 16.5%, 21.47%, NLR 시스템의 전란 반응조와 후단 반응조가 각각 20.46%, 22.50%, SBR 시스템은 23.85%를 차지하였다. 후단 반응조로 가면서 암모니아 산화 세균 군집이 증가하였고, 후단 반응조를 두는 것이 암모니아 산화 세균의 농학 배양에 효과적이라 할 수 있다.

Table 2에서 보는 것과 같이 주요 T-RF의 염기서열을 분석하였다. SBR 시스템은 모두 암모니아 산화 세균의 분류군에 속하는 Nitrosomonas sp. JLI2, Nitrosolobus multiformis와 94–100%의 유사도를 보였고, 이와는 달리 다른 BNR 시스템은 부상양체를 이용한 시스템의 Nitrosomonas sp. JLI2와 유사한 364 bp의 T-RF를 재현하고는 모두 암모니아 산화 세균과는 다른 β-Proteobacteria와 유사한 세균이라는 것을 확인하였다. 따라서 진 정세균의 군집 분석을 통해서 암모니아 산화 세균이 추정하였던 565–568 bp, 364–367 bp, 205 bp의 T-RF는 SBR 시스템에만 모두 암모니아 산화 세균에 의해 생성이 가능하였다. 부상 양체를 이용한 시스템은 364 bp의 T-RF만이 암모니아 산화 세균에 의한 것이었고, NLR 시스템은 종합적생물들에 의해 생성 가능한 T-RF였다. NLR 시스템에서만 관찰이 가능한 151 bp의 T-RF는 Cardiacoccus australiensis와 유사하였다. Massenez 등(16)에 의하면 Cardiacoccus australiensis는 호주의 환상슬리지에서 분리한 그립 응성 세균으로 슬리지에서 거품발생과 폐화성을 완화시키준다고 보고하고 있다. 따라서 SBR 시스템에서만 관찰이 가능한 151 bp의 T-RF는 Cardiacoccus australiensis와도 유사한다고 생각된다.

본 연구에서는 세 BNR 시스템의 질산화반응이 일어나는 반응 조의 시료로부터 T-RFLP 방법을 이용하여 진정세균과 암모니아 산화 세균의 군집을 분석하였다. 진정세균의 군집 분석을 통해 전체의 세균 군집의 동체를 살펴보는 부상양체에 대해서 추정하였다. 암모니아 산화 세균의 군집 분석과 연관성에서 범위가 가장 넓은 등 장성의 T-RF들을 크기에 따라 분석하였다. 진정세균의 군집은 T-RFLP 방법을 수행하여 더욱 정확한 군집 정보를 얻을 수 있었다. 암모니아 산화 세균이라 추정되는 T-RF의 염기서열 분석을 통해서 같은 크기의 T-RF를 갖는 세균군들이 다른 종류의 세균군들임을 알 수 있었다. 따라서 염기서열에 있는 T-RFLP 방법을 이용하는 것이 더욱 정확한 군집의 정보를 얻을 수 있을 것이라 생각된다.

Nso1225 primer를 이용하여 암모니아 산화 세균 군집을 분석하고, 염기서열 분석을 통해 본 결과, 암모니아 산화 세균과 다른 β-Proteobacteria 계열의 세균이 확인되었다. Calvo 등(4)은 β-Proteobacteria 계열에 속하는 암모니아 산화 세균을 조사하기 위해 널리 이용되는 Nso1225 FISH probe를 reverse primer로 사용하여 질산화세균의 다양성에 대하여 연구하였다. DGGE 방법을 통하여 질산화세균의 군집을 확인하고 염기서열 분석을 한 13 band 중 6에는 β-Proteobacteria 암모니아 산화 세균과 유사하였지만 1에는 β-Proteobacteria 계열 산화 세균과, 나머지 6에는 암모니아 산화 세균이 아닌 β-Proteobacteria 분류군으로 보고하고 있다.

또한 본 연구에서 RDP 검색을 통해서 Nso1225 primer는 374군과 결합하는 것을 알 수 있었다. 이들 중, 320 군의 암모니아 산화 세균 외에도 Sporobacter 속 3 군, Nitrobactor 속 1 군, Methylococcus 속 1 군, unidentifed β-Proteobacteria 42 군 등 암모니아 산화 세균이 아닌 다른 세균들과도 결합할 수 있다는 것을 알 수 있었다. 따라서 암모니아 산화 세균의 군 집의 정확한 분석을 위해서 염기서열을 검출할 수 있는 새로운 specific primer의 다양한이 필요하다고 생각된다.

감사의 말

이 논문은 2004학년도 충북대학교 학생연구지원사업의 연구비 지원에 의하여 연구되었음.

BKR system의 세균 군집 분석 31

Fig. 3. PAGE of the Hidl digested T-RFs of ammonia-oxidizing bacteria. Lane M: Size marker, 1-1: Reactor 2 solution of an advanced treatment system with plotting media (R2S), 1-2: Reactor 2 media of an advanced treatment system with plotting media (R2M), 1-3: Reactor 4 solution of an advanced treatment system with plotting media (R4S), 1-4: Reactor 4 media of an advanced treatment system with plotting media (R4M), 2-1: Solution of NRL oxic tank 1 (NRL1S), 2-2: Media of NRL oxic tank 1 media (NRL1M), 2-3: Solution of NRL oxic tank 2 (NRL2S), 2-4: Media of NRL oxic tank 2 (NRL2M), 3: Media of Sequencing Batch Reactor oxic tank (SBRM). Asterisks indicate lanes that nucleotide sequences of major bands were analyzed.
참고문헌

(Received February 6, 2006/Accepted March 17, 2006)
ABSTRACT: Structure of Bacterial Communities in Biological Nitrogen Removal System

Kyung-Mi Kim, Sang-Ill Lee¹, and Dong-Hun Lee* (Department of Microbiology and the Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Korea, ¹Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Korea)

To understand the efficient process of biological nitrogen removal (BNR) system, the structure of bacterial communities in nitrification reactors was analyzed using PCR and terminal restriction fragment length polymorphism (T-RFLP) methods. In this study, we used an advanced treatment system with plotting media, Nutrient Removal Laboratory system, or the rumination type sequencing batch reactor (SBR) system. The terminal restriction fragments of ammonia-oxidizing bacteria (AOB) and other β-proteobacteria were observed in all of three BNR systems. The nucleotide sequence analysis of terminal restriction fragments showed that Nitrosomonas and Nitrosolobus were major populations of AOB in SBR system, whereas uncultured β-proteobacteria and Cardiococcus australiensis were the predominant groups in other two BNR systems. Also the SBR system may be more efficient to enrich AOB. These results indicate that the different structure of bacterial community may be developed depending on the wastewater treatment systems, although the same influent is used.