Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone

DO-SAM KIM*, JI-MIN KIM**, GWANG-HO LEE*** and SEONG-DAE LEE****

*Division of Construction and Environmental Engineering, Korea Maritime University, Busan, Korea
**Department of Civil and Environmental Engineering, Graduate school, Korea Maritime University, Busan, Korea
***Department of Civil Engineering, Nagoya University, Nagoya, Japan
****Department of Civil Engineering, Hally University, Wonju, Korea

KEY WORDS: Inundation analysis, Coastal area, Inundation, Shallow water wave, Storm surge, Wave overtopping rate, Wave height

ABSTRACT: In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflour coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation region for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is useful tool for predicting inundation region, due to the coastal flood of severe water wave.

1. 서 론

태풍에 의한 피해로 일반적으로 고파랑, 폭풍해일, 강풍에 의한 연안구조물과 가축 등의 피해 및 피해와 더불어 발생하는 폭풍해일에 의한 해수면상승으로 인한 배후역의 침수피해를 주로 드는다. 여기서, 해안변동은 조사, 폭풍해일, 지진
교신자 김도삼 : 부산 영도구 동산동 1번지
051-410-4463 kimds@hnu.ac.kr

해일 등의 장기적 해수위 변동과 그로 인한 고파랑 등의 여러 요인들이 복합적으로 작용하여 발생한다. 이 중에서 조사는 충분한 정도로 예측될 수 있기 때문에 실제에 반영될 수 있는 큰 문제를 발생시키지 않지만, 폭풍해일의 경우에는 이상상황에 이용하여 발생하고 특히, 최근 폭풍해일과도類된 것의 경우에서, 기온이 비슷한 해안구조물들을 원리하여 해안가 저지대 등의 재해지에서 발생으로 인한 많은 인명 손실과 막대한 재산피해를 초래할 수 있다.

이와 같이 연안역에서 연안재해의 주요한 인자를 폭풍해일의 위험성에 대한 인식이 근본에 비교적 높지 않고, 폭풍해일에 관한 연구도 2003년도의 14호 태풍 Maemi에 의한 양 정난 재해를 앞두고 후속 활발히 수행되고 있다(김경옥과 이수성, 2004; 김병호 등, 2004; 강용구 등, 2004; Kawai et al., 2005a; 2005b; 하동수 등, 2006). 이와 같은 과거의 대형태풍에 포함한 폭풍해일은 지역으로 그의 분포특성이 매우 상이하기 때문에 지역에서 연안재해산출의 수립 및 연안재해예방에 위요함이 소요되므로 조속히 검토되어야 할 과제일 뿐만 아니라, 동시에 이로 인한 재해지에서 도시계획적인 문제가 지반고정 결정 등에 영향구역에 대한 추정이 점차적 요구되
2. 이론적 배경

2.1 폭풍해일고 산정

본 연구에서는 폭풍해일고 산정을 위하여 저기압에 의한 수면상승과 바람에 의한 수면상승을 고려한 비선형장파모델로 근거한 단층모델을 이용하였으며, 기초방정식은 연직방향으로 적분된 다음의 연속방정식 (1)과 비선형장파방정식 (2), (3)으로 구성되었다(Hendus 등, 2006).

\[
\frac{\partial h}{\partial t} + \frac{\partial (h+u) U}{\partial x} + \frac{\partial (h+u) V}{\partial y} = 0
\]

\[
\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D} \right) + \frac{\partial}{\partial y} \left(\frac{MN}{D} \right)
= fN - gD \frac{\partial N}{\partial x} - \frac{D}{\rho_w} \frac{\partial \rho_u}{\partial x} + \frac{\tau_x - \tau_m}{\rho_w}
+ A_k \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} \right)
\]

\[
\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{D} \right) + \frac{\partial}{\partial y} \left(\frac{N^2}{D} \right)
= -fM - gD \frac{\partial M}{\partial x} - \frac{D}{\rho_w} \frac{\partial \rho_u}{\partial x} + \frac{\tau_y - \tau_m}{\rho_w}
+ A_k \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right)
\]

여기서, \(t \) 는 시간, \(x, y \)는 수평방향으로 각각 좌표계이고, \(f \)는 Coriolis 계수, \(h \)는 수심, \(D \)는 기본수심 \(h_0 \)와 폭풍해일에 의한 수면верх \(h_0 \)를 합한 수심, \(M = uD, N = vD \).

\(U, V \)는 \(x, y \)방향의 해제에서 해면까지의 평균수속, \(\rho_w \)는 해수 밀도, \(\rho_u \)는 수면에서의 기압, \(A_k \)는 연직동정성계수, \(g \)는 중력가속도이다.

그리고, \(\tau_x \)와 \(\tau_y \) 및 \(\tau_m \)는 해면 및 해저에서의 \(x, y \)방향으로 각각의 단면력이다.

\[
\tau_x = \rho_w C_D U \sqrt{U_x^2 + U_y^2}
\]

\[
\tau_y = \rho_w C_D U \sqrt{V_x^2 + V_y^2}
\]

\[
\tau_m = \frac{\rho_w g h_0^2}{D^{7/3}} M' M'^2 + N^2
\]

\[
\tau_m = \frac{\rho_w g h_0^2}{D^{7/3}} N'M'^2 + N^2
\]

여기서, \(\rho_w \)는 대기 밀도, \(U_x \)와 \(U_y \)는 해면상 10m에서 각각 \(x, y \)방향으로 풍속, \(n_u \)은 Manning의 조도계수, \(C_D \)는 해면저항계수(항력계수)이다.

\[
C_D = \begin{cases}
1.290 - 0.024 U_{10}/10^{-3} & (U_{10} < 8 \text{ m/s}) \\
0.581 + 0.063 U_{10}/10^{-3} & (U_{10} \geq 8 \text{ m/s})
\end{cases}
\]

여기서, \(U_{10} \)은 해면상 10m에서 풍속이다.

본 연구에서는 얇은격자(Staggered mesh)를 적용하여 기초방정식을 유한차분법으로 자본론하여 수치계산을 수행하였다. 또한, 수치계산의 이상성은 시간상에 대해서는 전진문자 근사를 이용하였으며, 지반저항 항에 대해서는 중량자분근사를 적용한다. 본 연구의 수치계산에 대한 세부사항은 Kawai(2003)를 참조하기 바란다.

2.2 범람해석

평면 2차원 범람모델의 기초방정식은 연속방정식 (9)와 운동방정식 (10), (11)으로 구성된다.

\[
\frac{\partial h}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0
\]

\[
\frac{\partial M}{\partial t} + \frac{\partial (uM)}{\partial x} + \frac{\partial (uM)}{\partial y} = -gh_x \frac{\partial h}{\partial x} - \frac{T_m}{\rho_w}
\]

\[
\frac{\partial N}{\partial t} + \frac{\partial (uM)}{\partial x} + \frac{\partial (uM)}{\partial y} = -gh_y \frac{\partial h}{\partial y} - \frac{T_m}{\rho_w}
\]

여기서, \(u, v \)는 \(x, y \)방향의 유속 성분, \(h_k \)는 첨수된 수심, \(H \)는 수위(\(H = h_z + z \)는 지반고)이다. 그리고, \(\tau_x, \tau_y \)는 \(x, y \)방향으로 각각의 단면력이다.
방향의 혼합간단응력으로 식 (6), (7)과 같이 주어진다.
수계산업의 이산화는 폭풍해일고 산정에 이용한 치분근사와 동일한 방법을 적용하며, 격자는 전체 계산영역에 대해 선유량과 유속이 격자의 경계에, 수심은 격자의 중심에 위치시키는 것으로 하였다(Iwasa et al., 1986).
본 연구에서는 범람수의 산단부를 포함한 범람수의 불연속을 방지하기 위하여 연결된 지역에 비해 지반고가 높은 경우여식 (12)의 단락식을, 연결된 지역에 비해 지반고가 낮은 경우에 대해서는 식 (13)의 일차식을 각각 적용하여 선유량을 산정한다.

\[M_s = \frac{\nu h}{\sqrt{gh}} \]
(12)

\[M_s = \frac{\nu h N^2gh}{1} \]
(13)

여기서, \(M_s \)는 선유량, \(h \)는 지반고가 높은 지역에서의 수심, \(\nu \)는 추력계수를 나타내며, \(\nu = (2/3)^{3/2}, \nu^2 = 0.35 \) 로 하였다(Iwasa et al., 1986). 그리고, 침수역과 지반역의 경계는 수심의 최소치 \(\epsilon = 0.001 \)m에 의해 결정되는 것으로 하였으며, 이 때 \(\epsilon \)이하의 지역에 대해서는 지반역, \(\epsilon \)이상의 지역에 대해서는 침수역으로 표현된다. 또한, 침수역이 지반역으로 변화하는 경우에는 발생될 수 있는 (-)수심에 대해서는 수심을 양으로 하였다.

3. 수치계산
3.1 대상영역 및 계산조건
본 연구에서는 태풍에 의해 많은 피해를 입었던 부산광역시 강서구 녹산국가산업단지를 대상으로, 계산영역은 광역 200m, 중간 50m, 협력 20m의 곡각지구로 Fig 1과 같이 설정하여 수치적으로 계산을 수행한 것으로 하였다. 고려된 계산영역의 수심테이터와 해안선은 기본적으로 수치해석을 하였으며, 영역에서 충분히 큰 수심테이터에 대해서는 실제 측량테이터를 추가하여 사용하였다. 또한, 발달예측에 필요한 지반고 데이터는 mapping, 토목 엔지니어링, 측량 및 기반 구조 관리 전문가용 제품 및 서비스를 Autodesk 소프트웨어(http://www.autodesk.co.kr)의 기반 구조 솔루션의 일부인 Land Desktop을 이용하여 수치지형도에서 획득하였다. 그리고, 각 영역의 계산에 사용한 바람장 데이터는 태풍 Maemi 내습시 최대폭풍해일고의 발생시간인 2003년 09월 12일 22시의 경우이다(청동수 등, 2006).

3.2 폭풍해일고 산정
본 연구에서는 태풍에 의해 많은 피해를 입었던 부산광역시 강서구 녹산국가산업단지를 대상으로 Table 1에 제시된 태풍 Maemi 내습시 시간에 따른 태풍의 위치(경도, 위도), 기압값, 태풍방향 및 아동속도(부산광역시, 2005)를 입력조건으로 최대폭풍해일고를 추정하였다.
Fig 2는 Table 1의 입력계열로부터 얻어진 낙산국가산업단지 연안해역에서의 최대폭풍해일고를 나타낸 것으로, 녹산국가산업단지, 신항만 및 진우만 진해역에서의 최대폭풍해일고는 각각 1.69m, 1.60m, 1.47m 정도의 크기가나를 나타내는 것을 알 수 있다.

3.3 전해파량 산정
본 연구에서 대상으로 하는 녹산국가산업단지 연안해역에서의 전해파량산정은 SWAN모델(Hasselmann et al., 1973)로부터 추산하였다. 이때, SWAN모델에 적용한 설계조위는 Fig 2에서 얻어진 최대폭풍해일고 1.69m와 조위 1.776m(대항수산부, 2005)로부터 산정하였으며, 적용된 심해파량계수는 태풍 Maemi 내습시 부산향전 동방파계 전해역에서 측정되어진 파고값을 기준 데이터로 사용하여 약간간적 삼각형을 사용하였다(POSCO건설, 2004).
Table 1 Characteristics of typhoon Maemi

<table>
<thead>
<tr>
<th>Time</th>
<th>Longitude (°E)</th>
<th>Latitude (°N)</th>
<th>Pressure differential (hPa)</th>
<th>Radial distance from the typhoon center (km)</th>
<th>Progression speed (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0309111500</td>
<td>125.30</td>
<td>25.90</td>
<td>0.0</td>
<td>38.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0309111800</td>
<td>125.40</td>
<td>26.30</td>
<td>46.5</td>
<td>38.0</td>
<td>15.0</td>
</tr>
<tr>
<td>0309112100</td>
<td>125.60</td>
<td>27.00</td>
<td>83.0</td>
<td>38.0</td>
<td>20.0</td>
</tr>
<tr>
<td>0309120300</td>
<td>125.80</td>
<td>28.40</td>
<td>73.0</td>
<td>40.0</td>
<td>25.0</td>
</tr>
<tr>
<td>0309120600</td>
<td>126.10</td>
<td>29.50</td>
<td>68.0</td>
<td>40.0</td>
<td>30.0</td>
</tr>
<tr>
<td>0309120900</td>
<td>126.50</td>
<td>30.50</td>
<td>68.0</td>
<td>38.0</td>
<td>35.0</td>
</tr>
<tr>
<td>0309121200</td>
<td>126.90</td>
<td>31.70</td>
<td>68.0</td>
<td>38.0</td>
<td>35.0</td>
</tr>
<tr>
<td>0309121500</td>
<td>127.00</td>
<td>32.70</td>
<td>68.0</td>
<td>50.0</td>
<td>40.0</td>
</tr>
<tr>
<td>0309121700</td>
<td>127.30</td>
<td>33.50</td>
<td>68.0</td>
<td>55.0</td>
<td>40.0</td>
</tr>
<tr>
<td>0309122100</td>
<td>128.30</td>
<td>34.80</td>
<td>63.0</td>
<td>50.0</td>
<td>45.0</td>
</tr>
<tr>
<td>0309130300</td>
<td>129.70</td>
<td>36.90</td>
<td>43.0</td>
<td>90.0</td>
<td>45.0</td>
</tr>
<tr>
<td>0309131500</td>
<td>134.80</td>
<td>40.50</td>
<td>33.0</td>
<td>110.0</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Table 2 Design wave conditions in deep water and water levels at Noksan industrial complex

<table>
<thead>
<tr>
<th>Area</th>
<th>Coastal grid point</th>
<th>Significant wave height (m)</th>
<th>Significant wave period (s)</th>
<th>Wave direction</th>
<th>Approx. HHTW(m)</th>
<th>Storm surge height (m)</th>
<th>Design water level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noksan</td>
<td>6360(N34.50°,E128.55°)</td>
<td>12.4</td>
<td>15.0</td>
<td>S25°E</td>
<td>1.77</td>
<td>1.690</td>
<td>3.466</td>
</tr>
</tbody>
</table>

Fig. 3 Spatial distribution of wave height for typhoon Maemi around Noksan industrial complex

Fig. 4 Representation section of dike in front of Noksan industrial complex

Table 2에 대상지역에 대한 연안고도과의 신설해파제원, 조위 및 최대폭동해일고의 제원을 각각 제시한다.

Fig. 3은 녹산국가산업단지 연안해역에서 산정된 천복파량의 공간분포를 나타낸 것으로, 본 계산에서는 녹산국가산업단지 전 면해역에 발생될 수 있는 중폭파의 영향을 방지하기 위하여 전 면호안에 설치된 TTP의 영향을 고려하지 않는 것으로 하였다.

Fig. 4는 녹산국가산업단지 전면해역에 설치된 호안의 대표단 면의 형상을 나타낸 것으로(부산광역시, 2004). 각 단면별 위치에서 산정된 최대유의파고 $H_{1/10}$는 Type-A, Type-B, Type-C에
대하여 각각 1.41m, 1.47m 및 1.55m 정도의 값을 나타내었다. 그러고, 여기서는 나타내지 않았지만 최대유의주기 T1/3는 3개의 단면에 대하여 동일하게 15.0s인 것을 알 수 있었다.

3.4 범람예측

태풍 Maemi 내습시 도로의 건물의 벽치에 따른 녹산국가산업단지 배후에서의 침수범위 및 침수고를 예측하기 위하여 범람모델의 입력치로 주어지는 각 호안단면에서의 월파량을 산정한다. 이에, 각 호안의 단면형상에 따른 월파량에 대한 수리모형 심화(한국토지공사, 2005)은 31년에서 연금한 각 호안별 전면해역에서의 최대유의파고 및 최대유의주기를 조건으로 하여 산정되며, 그 결과 Table 3에 제시한다. Table 3으로부터 각 단면에 대한 월파량은 하용치 0.01m³/m·s(해양수산부, 2005)를 초과한 것을 알 수 있다. 본 연구에서는 Table 3의 각 단면별 월파량을 입력치로 하여 침수범위 및 침수고를 예측하며, 범람예측의 계산시간은 실계 탐색활동시간에 따른 영향과 경량을 일시시키기 위하여 3시간으로 하였다. 그리고 저명의 조도가 다르고 조도계수에 따라 범람유의 기동은 영향을 받으므로, 본 계산에서는 조도계수로 도도는 0.04(Fukuo et al., 1996), 건물은 밀도비에 따라 0.03~0.8(Miu and Shimizu, 1993)의 범위의 값을 적용하였다.

Fig. 5는 본 연구의 범람모델로부터 산정된 녹산국가산업단지 배후에서의 침수고 및 침수력에 대한 수리해석결과를 나타낸 것이다. 해석결과에 따르면 녹산국가산업단지의 두 블록 대부분이 침수되는 것을 알 수 있고, 전면 첫 번째 블록은 0.7m~1.2m 정도 침수가, 두 번째 블록에서 부분적으로 0.7m 이상의 침수가 발생하지만, 호안전면에서 범해칠수록 0.3m 이하로 감소함을 알 수 있다. Table 4에 나타낸 바와 같이 침수고에 대한 수리모형실험(한국토지공사, 2005)은 단면차원으로 수렴되었기 때문에 Fig. 5의 본 결과와 직접적인 비교는 어려지만 단면에 대해서만 비교하면 단면형상 Type-A, Type-B, Type-C에 대해서 호안으로부터 내측거리 30m 지점의 침수고는 0.77m~0.91m, 80m 지점의 침수고는 0.74m~0.89m, 130m 지점은 0.20m~0.23m로 본 연구의 계산결과와 경량이 잘 일치함을 알 수 있다.

Fig. 5에서 추정한 범람예측의 타당성을 검토하기 위하여 태풍 Maemi 내습후 녹산국가산업단지 인근에서의 침수고에 대한 설문조사 결과를 Fig. 6에 제시한다(부산광역시, 2004).
Fig. 6 Results of a field survey for inundation areas and depths in Noksan complex industrial

4. 결론

본 연구에서는 부산광역시 강서구 녹산국가산업단지를 대상으로 태풍 Maemi 내습시에 발달을 해석하였으며, 그 결과는 아래와 같다.

(1) 본 연구에서는 태풍 Maemi 내습으로 인한 녹산국가산업단지 인근의 희수역 및 치수고를 예측하였고, 그 결과를 수리모형검증의 결과 및 실문조사와 비교·검토하여 본 연구의 타당성을 확인할 수 있었다.

(2) 고파동에 대한 모란 왕파량의 정도 및 높은 산정은 경내 지역의 치수고 및 치수역을 예측하는데 중요한 파라미터로 적용할 수 있다.

(3) 본 연구의 범람모델은 연안해역의 예측, 방재계획의 수립, 위험도 작성, 배수역에서의 지반고 결정, 도시계획적인 문제 등에 충분히 활용될 수 있을 것으로 판단된다.

(4) 향후 강우에 의한 치수, 배수,이류 및 건물 등의 지하에 유입되는 침수량을 고려하여 보다 정교한 침수해량을 수리하고자 한다.

참고 문헌

POSCO건설 (2004). 03-00부두 태풍해일 피해배수 구조 및 수처리계획서(제2권 폭풍해일 및 태풍·해일·수해 피해 추진).

2006년 1월 8일 원고 접수
2007년 3월 13일 최종 수정본 제택