조건부가치측정법을 이용한 도시기상정보서비스의 경제적 편익 분석

조영상**· 구윤모***· 이종수****· 이중우*****

(차 례)

I. 서 론
II. 기존 문헌 연구
III. 계량 모형

IV. 실증 분석
V. 결론 및 함의

I. 서 론

대한민국은 전체 국토 면적의 4%에 해당하는 도시에 90% 이상의 인구가 거주하고 있고, 이들 도시들은 국지성 폭우, 폭설, 폭염과 같은 기상재해에 취약한 것으로 보고되고 있다. 이는 도시의 경우 인위적인 전물이나 구조물, 난방 및

* 본 연구는 기상지진개발사업단의 지원(CATER2010-1188)에 의해 수행되었음.
** 인제대학교 경영학부 조교수(제1저자).
*** 서울대학교 기술경영경제정책대학원 박사 과정 (공동저자).
**** 서울대학교 기술경영경제정책대학원 부교수 (공동저자).
***** 인제대학교 경영학부 교수 (교신저자).

최근 기상학 분야에서는 전통적인 형태의 기상학에서 다른 특성을 보이는 도시의 기상을 대상으로 하는 도시기상학(urban meteorology)에 대한 연구가 활발하게 진행되고 있는데, 이는 도시와 관련된 자연 및 사회 환경 요소에 대한 학계간 통합된 연구의 특징을 가지고 있다(OFCM, 2004). 일반적으로 도시기상은 집중호우나 폭염과 같은 극악기상(severe weather)에 대한 예보를 통하여 도시 내의 사고 발생 확률을 낮추는 것을 목적으로 하고 있으며, 도시 개별과 설계에 도심지역의 바람길 등을 고려하여 대기질을 향상시키고 생활환경 향상에 대비하는 등 국민의 삶의 질 향상을 위해 다양한 활용이 가능하다. 실제 도시기상학에서는 도시기상 정보를 도시계획 정비 사업에 활용하여 매년 발생하는 도시의 국지성 집중호우에 의한 침수 피해를 최소화하거나, 이렇게 내린 비를 효과적으로 저장하여 수자원으로 활용하는 방안을 연구하고 있으며, 전쟁
조선부가치측정법을 이용한 도시기상정보서비스의 경제적 측정 분석

또는 화학적 변화가 발생한 미상황에서 도심지역의 바람, 기온을 확보하고 지역 주민들에게 안전한 대피통로를 전달하여 그 피해를 최소화하는 연구들이 진행되고 있다. 이와 동시에 도시기상학은 도시기상 정보를 도로 및 항만 운영과 연계하여 수송 효율성을 높이거나 기후에 민감한 산업에 적절한 기상정보를 제공하여 해당 산업의 생산성을 향상시켜 산업·경제적 부가가치를 창출하는 데 기여할 것으로 전망되고 있다.

이러한 목적을 달성하기 위한 도시기상정보서비스는 1킬로미터~수백 미터의 미소규모(microscale)에 대해 10분 이내의 정보 제공 주기를 가지고 수요자 기반의 차별화된 기상정보를 제공하는 것으로, 기상 기술이 있어서는 최첨단 영역 중의 하나라고 할 수 있다. 따라서 장기적으로 도시기상 시스템을 구축하고 관련 응용기술을 개발하는 것은 기후변화의 탐지·감시·분석 능력을 향상시켜 국민의 삶의 질을 향상하고 국가의 지속적 성장에 기여할 수 있을 것으로 보인다.

한편, 의 경우 도시기상학에 대한 연구가 국내에 비해 상대적으로 확산하고 있음에도 불구하고, 미국은 정부기상청 정기 정보를 활용하여 기상, 생명, 물질, 산업, 도시 정보를 포함한 도시기상기상정보 시스템의 개발을 위해 미국기상청(National Oceanic and Atmospheric Administration : NOAA)을 중심으로 다부처 협력사업을 진행하고 있으며, 오스트리아는 도시기상 관리정보시스템인 CityWare를 개발하고 있다. 영국은 정부부처와 여러 대학이 협력하는 FRMRC(Flood Risk Management Research Consortium)를 통해 도시 홍수를 관리하기 위한 다양한 시스템을 개발하고 있으며, 영국 내의 도시 문제뿐만 아니라 기후변화에 취약한 지속적, 단기적으로 도시기상정보가 제공되고 있지 않음에, 현재 기상청의 도시기상 정보 제공원이 강도 높은 실시간 데이터, 동태정보, 경제적·사회적·자연적 피해를 예측하고 있다. 최근 기상정보는 기후변화에 대응하고 도시의 지속성, 효율, 도시생활, 자연, 꽃가루 확산 경로 등의 분석에 도움을 주는 도시기상정보서비스를 기획하고 있다.
도시기상 관련 기술개발과 기상정보 제공서비스를 위해서는 새로운 관측 인프라 구축과 고성능 컴퓨터의 도입 등과 같은 상당한 규모의 정부 투자가 필요한 만큼, 도시기상정보서비스의 효과를 사전적으로 정량화하여 분석할 필요가 제기되고 있으나, 현재까지 국내외에 도시기상정보가 도시민의 삶의 질 향상과 사회 후생 증가에 얼마나 영향을 미치는지에 대해 실증적으로 분석된 연구는 거의 없는 실정이다. 이에 본 연구에서는 시장이 형성되지 않아 직접적인 시장 가치를 측정하기 어려운 공공재나 환경재의 경제적 가치를 평가하는 데 많이 사용되고 있는 조건부가치평가법(Contingent Valuation Method : CVM)을 이용하여 최근 활발히 연구가 진행되고 있는 도시기상정보서비스에 대해 실제 소비자(도시민)들이 해당 정보서비스를 통해 얻게 되는 경제적 효용을 이들의 삶의 질 개선에 초점을 두고 추정하였다.

본 연구의 구성은 다음과 같다. 먼저, 제Ⅱ장에서는 정보 및 기상정보의 경제적 가치를 평가했던 기존 연구와 CVM을 적용하여 공공재의 가치를 추정한 기존 연구들을 살펴본다. 제Ⅲ장에서는 본 연구에서 사용한 CVM 모형에 대해서 구체적으로 살펴보고, 제Ⅳ장에서는 실제 설문 자료를 이용하여 경제적 편익을 추정하고 그 결과에 대해 논의하였다. 이를 바탕으로 제Ⅴ장에서는 결론과 함께 도시기상정보서비스와 관련된 정책적 함의를 도출하고 본 연구의 한계를 제시하였다.

Ⅱ. 기존 문헌 연구

1. 기상정보의 가치 평가

지식정보(knowledge information)의 일종인 기상정보의 가치 평가와 관련된 기존 연구의 대부분은 기상에 영향을 받는 특정 산업을 대상으로 하고 있으며, 특히 농업(agriculture), 항공(aviation), 전력발전(power generation) 등의 산업
조선부가치측정법을 이용한 도시기상정보서비스의 경제적 분석

에서 기상정보가 해당 산업의 생산량에 어떻게 영향을 미치는지를 중심으로 한 연구들이 대다수를 차지하고 있다. 또한 특정 산업 분야를 대상으로 하지 않고, 폭우나 폭염과 같은 기상이변이나 교통사고 및 화재와 같은 재난·재해와 관련하여 기상정보의 가치를 평가한 연구들도 찾아볼 수 있다.

먼저, 기상이 농업에 미치는 영향과 관련한 연구의 경우, Katz et al. (1982)은 위성관 주의 Yakima Valley에서의 서리 예측을 중심으로 농사 계획에 대해 서리 예측이 어느 정도의 경제적 가치를 가지는지를 통해 의사결정(dynamic decision-making) 접근법을 사용하여 분석하였으며, 이를 통해 1에이커 당 기상정보의 가치는 270~808달러라고 제시하였다. Tice and Clouser (1982)는 미국 인디아나(Indiana) 주의 데이터를 이용하여, 만약 더 정확한 기상예측 결과를 작물생산 과정에 이용할 경우 농장 수입을 9~14% 정도 증가시킬 수 있다는 결론을 제시하였다. Adams et al. (1995)은 베이지안 결정 이론(Bayesian decision theory)에 기초하여 미국 남동부 농업에 미치는 기상정보의 경제적 가치를 분석한 결과, 기상정보가 완벽할 경우 연간 1억 4,500만 달러, 불완전할 경우 연간 9,600만 달러의 경제적 가치가 있을 것으로 예상하였 다. 또한, Fox et al. (1999)은 캐나다 온타리오(Ontario)의 가을밀(winter wheat) 재배자들을 대상으로 강수 및 기상 예보가 얼마나 큰 가치를 가지는지를 평균-분산 모형(mean-variance model)을 기반으로 분석하였으며, 분석 결과 이들 가을밀 농장들에게 강수 예측의 가치는 연간 1억 달러 당 평균 100 캐나다 달러인 것으로 나타났다.

기상이 항공에 미치는 영향과 관련된 연구의 경우, Leigh (1995)는 호주 지역의 공항에 대해 기상정보에 따른 항공기 운용비용 자료를 이용하여 기상 예보 정확도에 따라 절감 가능한 비용을 계산하였다. 그 결과 1993년 한 해 동안 코탄스 항공(Qantas Airways)이 시드니 공항에서 국제선 운항을 하는 데 있어 기상예보의 가치는 690만 달러였고, 기상예보의 정확도가 1% 개선될수록 연간 120만 달러의 추가적인 편익이 발생하는 것으로 분석되었다. Rhoda et al. (1996)은 미국의 공항에서 기상정보를 활용하여 항공기 연착에 의한 비용을 얼
마나 줄일 수 있는지 계산하였으며, 그 결과 연간 2,500만 달러를 절감할 수 있을 것으로 추정하였다. 유사하게 Allan et al. (2001)은 미국 지역의 공항에서 항공기 연착에 의한 비용을 계산하였고, 기상정보를 활용하여 뉴욕시티(NY City) 공항을 기준으로 연간 1억 7,600만 달러를 절감할 수 있음을 것으로 예상하였다. Keith et al. (2007)은 미국 내 괴기 기상에 따른 항공기 운영비용 자료에 기반하여 기상예보 정확도에 따른 절감 가능한 비용을 계산하였으며, 기상정보에 따라 연료를 탈제하는 경우 2003년 기준 1,500만~5,000만 달러의 연료비를 절감할 수 있다는 결론을 제시하였다.

기상이 전력 발전에 미치는 영향과 관련하여, Teisberg et al. (2005)은 신경망모형(neural network model)을 이용하여 미국의 기온예보 정확도에 따른 전력비용 절감액을 분석하였으며, 기온예보의 정확도 측면으로 연간 1억 6,600만 달러의 비용을 절감할 수 있다는 결론을 제시하였다. 한창희 외 (2009)는 Teisberg et al. (2005)의 방법론을 국내에 적용하였으며, 분석 결과 연간 1,084만 달러의 비용을 절감할 수 있다고 제시하였다.

<table>
<thead>
<tr>
<th>작용 분야</th>
<th>대표 연구</th>
<th>방법론</th>
<th>주요 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>농업</td>
<td>Katz et al. (1982)</td>
<td>동적 의사결정법</td>
<td>미국 위치탄 주 농장의 서리예측 기상정보 가치는 1에이커 당 276~808달러임.</td>
</tr>
<tr>
<td></td>
<td>Tice and Clouser (1982)</td>
<td>이산화물 프로그래밍</td>
<td>미국 인디아나 주의 경우 더 정확한 기상예측 자료를 이용하여 농장의 수입을 9~14% 증가시키길 수 있음.</td>
</tr>
<tr>
<td></td>
<td>Adams et al. (1995)</td>
<td>베지간 결정이론</td>
<td>미국 남동부 농업에 있어서 기상정보가 완벽한 경우 연간 1억 4,500만 달러, 불완전할 경우 연간 9,600만 달러의 경제적 가치가 있음.</td>
</tr>
<tr>
<td></td>
<td>Fox et al. (1999)</td>
<td>평균-분산 모형</td>
<td>캐나다 온타리오의 가산물 재배에 있어서 기상정보는 1백타르당 평균 100달러의 가치가 있음.</td>
</tr>
<tr>
<td>항공</td>
<td>Leigh (1995)</td>
<td>비용 분석</td>
<td>푸나스 항공(Qantas Airways)이 시드니 공항의 국제선 운항을 하는 데 있어 기상예보의 가치는 690만 달러이고, 기상예보의 정확도가 1% 개선될수록 연간 120만 달러의 추가적인 편익이 발생함.</td>
</tr>
<tr>
<td></td>
<td>Rhoda et al. (1996)</td>
<td>비용 분석</td>
<td>기상정보를 활용하여 미국 공항의 연착을 줄일 경우 연간 2,500만 달러 비용 절감이 가능함.</td>
</tr>
<tr>
<td></td>
<td>Allan et al. (2001)</td>
<td>비용 분석</td>
<td>기상정보를 활용할 경우 뉴욕시티 공항 기준 연간 1억 7,600만 달러 절감 가능함.</td>
</tr>
<tr>
<td></td>
<td>Keith et al. (2007)</td>
<td>비용 분석</td>
<td>미국의 경우 기상정보에 따라 연료를 탑재하는 경우 2003년에 1,500만~5,000만 달러의 연료비 절감이 가능하였음.</td>
</tr>
<tr>
<td>전력</td>
<td>Teisberg et al. (2005)</td>
<td>신경망모형</td>
<td>미국의 경우 기온예보의 정확도 향상으로 인해 연간 1억 6,600만 달러의 비용을 절감할 수 있음.</td>
</tr>
<tr>
<td></td>
<td>한창희 외 (2009)</td>
<td>신경망모형</td>
<td>한국의 경우 기온예보의 정확도 향상으로 연간 1,084만 달러의 비용을 절감할 수 있음.</td>
</tr>
</tbody>
</table>
조영상·구윤모·이종수·이종우

계속

<table>
<thead>
<tr>
<th>적용분야</th>
<th>대표 연구</th>
<th>방법론</th>
<th>주요 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baccini et al. (2008)</td>
<td>베이지안 메타 분석</td>
<td>중부 유럽과 북부 유럽의 경우 각각 29.4°C와 23.3°C를 넘어선 경우 온도가 1°C 증가할 때마다 사망률이 중부와 북부 각각 3.12%, 1.84% 증가함.</td>
</tr>
<tr>
<td></td>
<td>Leviakangas et al. (2007)</td>
<td>도로 교통사고 피해액을 기반으로 분석한 결과, 현재 제공되는 기상정보의 경제적 가치는 432만~865만 유로로 추정됨.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gunasekera (2005)</td>
<td>호주의 화재 기상 서비스 개선으로 7년간 5,000만~1억 달러의 피해를 줄일 수 있음.</td>
<td></td>
</tr>
</tbody>
</table>

것으로 보았고, 이를 전국으로 확대하면 7년간 5,000만~1억 달러의 피해액을 줄일 수 있다는 결과를 제시하였다.

<표 1>은 이상에서 언급한 기상정보의 가치와 관련된 기존 연구들을 적용 산업과 방법론, 주요 결과를 중심으로 정리하여 제시하고 있다. <표 1>에서 알 수 있듯이 현재까지 기상정보의 가치와 관련한 연구들의 대부분은 기상정보의 가치를 특정 분야 및 산업의 비용 절감(cost reduction)의 측면에서 접근하고 있으며, 일반적인 공공지의 가치 평가에 사용되는 수요에 기반한 편익 분석 (demand-based approaches)은 매우 제한적이다(Rollins and Shaykewich, 2003). 특히 도시기상정보라는 새로운 정보서비스에 대한 경제적 편익 분석은 아직까지 수행되지 않은 것으로 보인다.

2. CVM을 이용한 소비자의 지불의사결정 추정

공공재와 같이 시장에서 거래를 통해 가격이 형성되지 않는 재화에 대한 경제적 가치 평가 방법으로 가장 널리 사용되는 것 중의 하나는 설문에 기반한
조선부가치측정법을 이용한 도시기상정보서비스의 경제적 평가 분석

CVM이다. CVM은 설문조사 과정에서 발생하는 편의에 의해서 분석 결과의 신뢰성이 떨어질 수 있다는 문제점을 가지고 있지만(Diamond and Hausman, 1994), 그럼에도 불구하고 여러 분야에서 CVM을 활용한 다수의 연구가 국내외에서 진행되면서 비시장재화의 가치를 측정하는 대표적인 방법론으로 인식되고 널리 사용되고 있다.

본 연구에서 편석 대상으로 하고 있는 기상정보 역시 비경합성(non-rivality)과 비배제성(non-excludability)의 특징을 가진 공공재의 일종으로 간주할 수 있기 때문에, 가치 평가에 있어 CVM을 비롯한 비시장재의 가치 평가 방법이 유용하게 사용될 수 있다(Rollins and Shaykewich, 2003; Frei, 2010). 유사한 연구로 Kenkel and Norris(1995)는 오클라호마(Oklahoma)의 농장 및 목장 종사자들을 대상으로 CVM을 이용하여 해상도가 높아진 실시간 중간규모 기상정보(real-time mesoscale weather information)에 대한 지불의사역(willingness to pay: WTP)을 추정하였으며, 분석 결과 농업 종사자들은 해당 정보서비스에 대해 월평균 5.83~6.55달러를 지불할 의사가 있는 것으로 나타났다. Weiher et al.(2002)은 CVM을 이용하여 미국 기상서비스의 가치를 일반 시민들을 대상으로 추정한 결과, 현재의 기상서비스에 대한 지불의사는 가구당 연간 109달러, 국가 전체적으로는 11.4조 달러에 이르는 것으로 분석되었다. 또한, Rollins and
Shykewich (2003)는 캐나다 기상청이 제공하는 자동전화응답서비스(automated telephone answering device; ATAD)에 대해 CVM을 이용하여 소비자 WTP를 추정하였으며, 기상정보를 위한 전화로 통화의 가치는 평균 1.2달러로, 이는 연간 1,650만 달러의 경제적 가치가 있는 것으로 분석되었다.

III. 제한 모형

응답자의 WTP를 분석하기 위해 CVM을 이용한 실증 연구들은 개방형 질문법(open-ended question), 경매법(bidding game), 지불카드법(payment card), 양분선택형(dichotomous choice) 질문법 등의 방식을 사용한다. 최근 대부분의 CVM을 이용한 관련 실증연구들에서는 양분선택형 질문법을 많이 사용하고 있는데, 이는 설문 응답자의 대답이 유의하고, 출발점 편의(starting point bias)나 설문조사원 편의에 의한 영향이 적으며, 비합리적 지불의의가 발생할 가능성이 적고, 응답자의 전략적 행위를 줄일 수 있기 때문이다(유승훈·이주석, 2008).
양분선택모형은 설문조사원이 제시된 금액에 대해 지불할 의사를 묻어보면 응답자가 '예/or 아니오'로 대답하는 방식이며, 본 연구에서는 이 방식을 사용하여 설문을 진행하였다. 또한, 본 연구에서는 만약 응답자가 처음 제시한 금액을 수용하면 더 큰 금액을 제시하고, 그렇지 않은 경우 더 낮은 금액을 한 번 더 제시하여 응답자의 지불의의를 묻는 이중경계(double bounded) 모형을 사용하였다.
먼저, 설명변수 \(x_i\)에 대해서 개인 \(i\) 의 효용 \(Y_i\) 가 \(Y_i = x_i \beta + u_i\)로 표현된다고 가정한다. 여기서 개인 \(i\) 의 효용 혹은 편익을 나타내는 잠재변수(latent variable) \(Y_i\)는 직접적으로 관찰되지 않고, 설문에서 제시하는 가격에 대한 응답을 통해서만 추정이 가능하다. 이 때, 임의의 무작위로 주어진 금액 \(t_i\)를 지불할 의사가 있는지에 대해 개인 \(i\)는 '예' 또는 '아니오'로 대답할 수 있고, 만약 응답자가 '예'라고 대답한 경우 \(y_i = 1\), '아니오'라고 대답한 경우에는 \(y_i = 0\)로 표시할 수 있다. 즉, 응답자의 대답 \(y_i\)와 잠재변수 \(Y_i\)의 관계는 \(Y_i \geq t_i\)일 때 \(y_i = 1\), \(Y_i < t_i\)일 때 \(y_i = 0\)라고 할 수 있다. \(u_i\)가 I.I.D.(independently, identically distributed) 성질을 만족하면서 평균은 0, 표준편차는 \(\sigma\)인 정규분포를 가지는 오차항이라고 할 때, 응답자가 제시된 가격보다 높은 지불의사를 가지고 있을 확률은 식 (1)과 같으며, 여기서 \(z_i\)는 표준정규분포의 확률변수이다.

\[
Pr(y_i = 1|x_i) = Pr(Y_i \geq t_i) \\
= Pr(x_i' \beta + u_i \geq t_i) \\
= Pr(u_i \geq t_i - x_i' \beta) \\
= Pr(z_i \geq (t_i - x_i' \beta)/\sigma)
\]
(1)

여기서 \(\Phi\)를 표준정규분포의 누적분포함수라 할 때, 임의의 금액 \(t_i\)를 송출하거 나 거부할 확률은 식 (2)와 같이 나타낼 수 있다.

\[
Pr(y_i) = \begin{cases}
1 - \Phi((t_i - x_i' \beta)/\sigma) & \text{if } y_i = 1 \\
\Phi((t_i - x_i' \beta)/\sigma) & \text{if } y_i = 0
\end{cases}
\]
(2)

이용에 제시한 가격에 대한 한 번의 송탁 여부에 대해서 분석하는 단일경계 (single bounded) 모형의 경우, \(n\)명의 응답자에 대한 로그우도함수는 식 (3)과 같으며, 본 연구에서 사용한 이중경계 상황에서의 로그우도 함수는 식 (4)와 같다.
조영성 · 구윤모 · 이종수 · 이종우

\[
\log L = \sum_{i=1}^{n} \left\{ y_i \log \left[1 - \Phi \left(\frac{t_i - x_i \beta}{\sigma} \right) \right] + (1 - y_i) \log \left[\Phi \left(\frac{t_i - x_i \beta}{\sigma} \right) \right] \right\} \tag{3}
\]

\[
\log L = \sum_{i=1}^{n} \log L_i^{mv} \left[1 - \Phi \left(\frac{t_{H,i} - x_i \beta}{\sigma} \right) \right] + L_i^{mw} \left[\Phi \left(\frac{t_{H,i} - x_i \beta}{\sigma} \right) - \Phi \left(\frac{t_{L,i} - x_i \beta}{\sigma} \right) \right] + L_i^{mv} \left[\Phi \left(\frac{t_{L,i} - x_i \beta}{\sigma} \right) - \Phi \left(\frac{t_{L,i} - x_i \beta}{\sigma} \right) \right] + L_i^{mw} \left[\Phi \left(\frac{t_{L,i} - x_i \beta}{\sigma} \right) \right] \tag{4}
\]

여기서 \(I_i \)는 응답자가 해당 구간에 포함되는지 여부를 나타내는 인디케이터 (indicator)로 \(L_i^{mv} \)는 처음 제시된 가격과 2차로 제시된 2배의 가격을 모두 수락하는 경우, \(L_i^{mw} \)은 처음 제시된 가격은 수락하나 2차로 제시된 2배의 가격은 거부한 경우, \(L_i^{nv} \)는 처음 제시된 가격은 거부하였으나 2차로 제시된 1/2 가격은 수락하는 경우, \(L_i^{nw} \)는 처음 제시된 가격과 2차로 제시된 1/2 가격 모두 거부한 경우를 의미하며, 응답자 \(i \)가 각각의 경우에 해당하면 \(I_i \)는 1, 그렇지 않은 경우에는 0의 값을 갖는다. \(t_{L,i}, t_{H,i}, t_{L,i} \)는 각각 응답자에게 제시된 초기 가격, 2차로 제시된 초기 가격보다 2배 높은 가격, 그리고 2차로 제시된 초기 가격의 절반 가격을 나타낸다.

IV. 실험 분석

CVM을 이용하여 도시기상정보서비스에 대한 경제적 가치를 추정하기 위해 2011년 1월 서울·경기·인천의 수도권 지역 1,000가구의 가구주 본인 혹은 배우자를 대상으로 설문을 진행하였다. 설문은 전문업체(EZ 설베이)를 통하여 인
표 2: 동네기상정보서비스와 도시기상정보시스템 비교

<table>
<thead>
<tr>
<th>제공되는 기상정보</th>
<th>동네기상정보시스템 (현재)</th>
<th>도시기상정보시스템 (예정)</th>
</tr>
</thead>
<tbody>
<tr>
<td>기상정보 제공주기</td>
<td>3시간 간격의 예측 정보</td>
<td>1시간 간격의 예측정보 + 10분 단위 분석정보 + 고해상도 실시간정보</td>
</tr>
<tr>
<td>기상정보 제공경로</td>
<td>방송, 전문, 인터넷</td>
<td>방송, 전문, 인터넷, 스마트 기상서비스 시스템* 웹 2.0 기반의 데이터 센터</td>
</tr>
</tbody>
</table>

주: * 여기서 '스마트 기상서비스 시스템'이라면 페이스북(facebook)이나 트위터(twitter)와 같은 소셜네트워크서비스(SNS) 등을 이용하여 수요자 중심으로 기상정보를 전달하는 시스템을 의미함.

터넷으로 이루어졌다. 설문은 도시기상에 대한 구체적인 설명과 함께 표 2와 같이 현행 동네예보와 새로운 도시기상정보서비스의 차이점을 먼저 자세히 제시하였다. 즉, 도시기상정보서비스에서는 기존 동네예보에서 추가적으로 국지성 호우, 도심열섬, 열대야, 꽃가루 확산 경로 등과 관련된 정보를 제공해 주고, 현행 3시간 간격의 기상예측을 1시간 간격으로 제공하며 동시에 10분 단위의 분석정보를 고해상도로 제공해 주는 경우를 가정하였다. 또한 기상정보를 제공하는 경로(혹은 매체)는 기존의 방송, 전문, 인터넷에서 소셜네트워크서비스(SNS)를 활용하는 것으로 확장한 경우를 가정하였다. 인터넷을 통한 설문은 응답자가 본 설문과 관련된 배경 지식들을 충분히 입고 이해하도록 일정 시간 동안 다음 설문 페이지로 넘어가지 않도록 구성되었다.

설문에서의 초기 제시 금액은 1,000원~10,000원까지 1,000원 단위로 10등분하여 이 중 하나를 초기 금액으로 임의로 제시하였으며, 각각의 초기 금액에 대해서 100명의 표본을 각각 할당하였다. 또한 설문에서는 양질선택형 질문법으로 지불의사를 유도하여 지불수단은 향후 5년간 매년 가구의 소득세로 지출된다는
표 3 응답자의 인구통계학적 변수

<table>
<thead>
<tr>
<th>응답자 특성</th>
<th>구분</th>
<th>응답수(명)</th>
<th>평균</th>
<th>표준 편차</th>
</tr>
</thead>
<tbody>
<tr>
<td>성별</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>남성 (0)</td>
<td>500</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>여성 (1)</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>나이</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0~20</td>
<td>1</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21~30</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31~40</td>
<td>242</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41~50</td>
<td>263</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51~60</td>
<td>283</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61~70</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>학력</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0~5</td>
<td>4</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~10</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11~15</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16~20</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21~26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>월평균 가구소득 (만원)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0~100</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100~200</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200~300</td>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>300~400</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400~500</td>
<td>188</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500~600</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600~700</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>700~800</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>800 이상</td>
<td>39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

사실은 응답자에게 설명하였다. 추가적으로 응답자들은 성별, 나이, 학력, 소득 등과 같은 인구통계학 변수를 기입하였으며, 표 3은 설문에 참여한 응답자의 기초 통계자료를 보여주고 있다.
조전부가치측정법을 이용한 도시기상정보서비스의 경제적 편익 분석

表 4 CVM 모형의 계수 추정 결과

<table>
<thead>
<tr>
<th>계수</th>
<th>추정치</th>
<th>표준 편차</th>
<th>t-값</th>
<th>p-값</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>8084.34**</td>
<td>2016.87</td>
<td>4.0080</td>
<td>0.0001</td>
</tr>
<tr>
<td>β_1</td>
<td>7.33**</td>
<td>1.35</td>
<td>5.4180</td>
<td>0.0000</td>
</tr>
<tr>
<td>β_2</td>
<td>-1268.21*</td>
<td>613.47</td>
<td>-2.0670</td>
<td>0.0387</td>
</tr>
<tr>
<td>β_3</td>
<td>-290.75*</td>
<td>126.13</td>
<td>-2.3050</td>
<td>0.0212</td>
</tr>
</tbody>
</table>

주: * 5% 수준에서 유의, ** 1% 수준에서 유의함.

응답자의 WTP를 추정하기 위해서 앞의 식 (4)를 사용하였다. 여기서 $x' \beta$는 $\beta_0 + \beta_1 \times Income + \beta_2 \times Gender + \beta_3 \times Education$로 가정하였으며, Income은 월평균 가구소득을 만 원 단위로, Gender는 응답자의 성별로 남성의 경우 0, 여 성의 경우 1이며, Education은 교육 연수로 1~21년까지의 값을 가진다. 사회 경제학적 변수를 고려한 로그구도함수를 NLOGIT 3.0을 이용하여 추정한 결과는 <표 4>와 같다.

분석 결과 모든 계수는 신뢰구간 5% 이내에서 통계적으로 유의한 것으로 나타났으며, 도시기상정보시스템에 대한 가구당 연간 평균 WTP는 약 5,963원1)으로 계산되었다. 추가적으로 사회경제학적 변수들을 살펴보면, 월평균 가구 소득은 100만 원 높을수록 연간 733원을 더 높은 의지가 있는 것으로 나타났다. 이는 소득 수준이 높을수록 연간 지불해야 되는 세금에 대해 상대적으로 덜 민감하 며, 여가 및 건강 등과 관련한 삶의 질 향상에 관심이 많기 때문인 것으로 추 측된다. 또한 남성은 여성보다 추가적으로 연간 1,268원을 더 지불할 의지가 있 는 것으로 나타났는데, 이는 남성의 경우 상대적으로 외부 활동이 많기 때문에 남자에 더 민감하기 때문인 것으로 판단된다. 반면 교육 정도와 WTP 사이에는

1) 제시된 가구당 평균 WTP를 통계청(2005년) 자료를 이용하여 서울·경기 지역의 가구 수와 골하며, 연평균 396억 원의 경제적 편익이 발생할 것으로 보인다. 또한, 가구당 WTP가 가구 소득에 비례한다고 가정하고 6개 평통도시로 도시기상정보서비스를 확장할 경우 205억 원의 편익이 추가적으로 발생할 것으로 예상된다.
조영성 · 구윤모 · 이종수 · 이종우

〈표 5〉 WTP의 평균값 추정 결과

<table>
<thead>
<tr>
<th>평균 WTP</th>
<th>평균값</th>
<th>표준 편차</th>
<th>t-값</th>
<th>p-값</th>
<th>95% 신뢰구간</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균 WTP</td>
<td>5,962.95**</td>
<td>309.94</td>
<td>19.24</td>
<td>0.0000</td>
<td>5,283.8 ~ 6,648.7</td>
</tr>
</tbody>
</table>

주: ** 1% 수준에서 통계적으로 유의함.

반비례 관계가 있는 것으로 나타나는데, 교육 기간이 1년 증가할수록 WTP는 연간 291원이 낮아지는 것으로 분석되었다. 이는 학력이 낮음수록 기상에 민감한 직종에 있을 확률이 높기 때문이라고 추측해 볼 수 있다.

추가적으로 확률변수인 평균 WTP에 대한 유의도 검증을 델타범을 이용하여 실시하였으며, 〈표 5〉와 같이 유의 수준 1% 내에서 통계적으로 유의한 것으로 나타났다. 추정된 계수간의 분산-공분산 행렬을 이용하여 다변량 정규분포로 이루어진 WTP에 대해서 5,000회 반복 추출으로 신뢰구간을 확산한 결과, 양끝의 2.5%를 제외한 95% 신뢰구간은 5,284원~6,649원으로 계산되었다.

V. 결론 및 함의

현대사회에서 기상정보의 중요성은 나날이 증가하고 있다. 특히, 우리나라와 같이 복잡한 구조를 가지는 대도시에 높은 밀도의 인구가 거주하는 경우, 기존의 기상관측시스템보다 정밀하고 신속하면서도, 도시민들을 위한 유용한 기상 정보를 추가적으로 제공해 줄 수 있는 도시기상정보시스템이 필요하다고 할 수 있다. 이러한 상황에서 본 연구에서는 도시민의 삶의 질을 향상시키고 여러 산업에 긍정적 영향을 많이 줄 것으로 기대되는 '도시기상정보서비스'의 경제적 가치를 수요에 기반하여 실증적으로 추정하였다. 본 연구에서는 수도권 지역 1,000개의 가구를 대상으로 설문을 실시하였으며, 분석 결과 도시기상정보서비스 제공을 위해 향후 5년간 가구당 연간 약 5,963원을 지불할 의사가 있는 것
조건부가치측정법을 이용한 도시기상정보서비스의 경제적 편익 분석

을 확인하였다. 또한 가구의 소득이 높을수록, 여성보다는 남성이, 교육연수가 높을수록 더 높은 지불의사향을 나타내는 사실을 알 수 있었다.

본 연구의 의의를 살펴보면 다음과 같다. 먼저 일반적으로 공공재나 환경재의 경우 CVM을 이용하여 경제적 가치를 추정하는 방법이 널리 사용되고 있으나, 유사하게 시장에서 거래되지 않는 공공정보(public sector information: PSI)의 경제적 가치 추정에 대한 연구는 국내외에서 찾아보기가 힘든 실정이다. 특히, 공공정보의 하나인 기상정보의 경제적 가치 추정에 대해서는 국내의 경우 CVM 혹은 다른 방법론을 통해 국민들을 대상으로 경제적 가치를 실증 분석한 사례가 없으며, 도시기상정보서비스는 새로운 분야에 대해서는 필요성에 비해 전반적인 수요조사나 기초적인 편익 분석이 전혀 수행되지 않은 실정이다. 이런 측면에서 CVM을 이용하여 도시기상정보서비스의 경제적 가치를 추정한 본 연구는 CVM의 적용 범위를 공공정보의 하나인 기상정보서비스로 확장하였다는 의의를 가진다고 할 수 있다.

다음으로 본 연구의 분석 결과는 향후 정부가 도시기상 관련 기술의 개발, 인프라 구축, 서비스 제공을 위해 필요한 비용편익 분석의 기초 자료로 활용될 수 있다. 즉, 본 연구의 결과를 이용하면, 도시기상정보서비스를 제공하기 위해 필요한 정부의 비용 대비 도시민이 얻는 경제적 편익을 정량적으로 비교할 수 있고, 편익이 더 큰 경우에는 도시기상정보서비스를 개발하고 제공할당위성을 얻을 수 있을 것이다.

하지만 본 연구의 분석 결과는 도시기상정보서비스로부터 발생하는 편익 중에서 도시민의 삶의 질 증진에만 초점을 맞추었다는 한계가 존재하고 있다. 즉, 보다 정확한 도시기상정보서비스의 경제적 편익과 가치는 도시민의 삶의 질 개선뿐만 아니라, 민간 기상산업의 활성화 효과, 재해경감 효과, 환경·정력·건설·유통 등 다양한 산업에 미치는 직접·간접적인 편익 등을 종합되지 않게 정량적으로 분석해야 보다 정확하게 추정될 수 있을 것이다.
조영상 · 구윤모 · 이종우 · 이종우

◎ 참고 문헌 ◎

1. 기상청, “도시기상 서비스 추진을 위한 기술 기획 연구”, 2011
http://news.hankooki.com/lpage/society/201007/h2010072119153921950.htm

요 약

조건부가치측정법을 이용한 도시기상정보서비스의 경제적 평가 분석

조영상·구윤모·이중수·이중우

인구의 도시 집중화가 심화되고 도시지역에서의 국지성 폭우, 폭설, 폭염 등과 같은 이상 기상재해가 대대 증가하면서, 도시지역의 지리적 특성을 고려한 도시기상정보서비스에 대한 관심이 높아지고 있다. 도시기상정보서비스는 현재보다 더욱 세밀한 단위로 도시의 기상 현상을 관측하여 실시간으로 도시에 특화된 유용한 기상정보를 제공하는 첨단 과학기술 분야로, 도시민의 삶의 질 향상뿐만 아니라 도시내 산업 발전에도 기여할 것으로 예상되고 있다. 본 연구에서는 이러한 도시기상정보서비스의 경제적 가치를 해당 정보서비스의 수요자인 도시민을 대상으로 조건부가치평가 방법을 사용하여 분석하였다. 본방 결과, 수도권 가구별로 기준으로, 한 가구당 평균적으로 총액 5년 동안 연간 5,963원을 도시기상정보서비스에 지불할 의무가 있는 것으로 나타났으며, 가구주의 사회·경제적 특성에 따라 지불의사례에 차이가 있는 것으로 나타났다.

주제어: 도시기상정보서비스, 조건부가치측정법, 지불의사례
Abstracts

Economic Benefit Analysis of Urban Meteorological Information Service Using Contingent Valuation Method

Youngsang Cho, Yoonmo Koo, Jongsu Lee and Joong-Woo Lee

As the concentration of people in urban area become severe and abnormal meteorological disasters such as regional torrential rains, heavy snows, sweltering heat, and so on have been increasing, the interest on the urban meteorological information service, which considers the specific characteristics of metropolitan areas in weather forecasting, are also increasing. The urban meteorological information service is one of up-to-date technologies which observes urban weather in a more microscale perspective compared to the present weather forecasting system and provides useful meteorological information which is specialized for metropolises in real time. Therefore, urban meteorological information service is expected to contribute to the increase in quality of life for citizens and to the development of industry in urban areas. In this study, we estimate the economic benefit of the urban meteorological information service using contingent valuation method with survey data of the citizens who are expected to be the direct customers of this new information service. As a result, we conclude that the household is willing to pay 5,963 Korean won per year on average, during a period of five years, for receiving this meteorological information service, and this willingness-to-pay is varied by the socio-economic characteristics of head of the household.

Keywords: urban meteorological information service, contingent valuation method, willingness-to-pay