Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray ‘Ligularia stenocephala’

Ki-Deog Kim1*, Eung-Ho Lee2, Won-Bae Kim3, Jun-Gu Lee2, Dong-Lim Yoo, Young-Seok Kwon4, Jong-Nam Lee2, Suk-Woo Jang2, and Soon-Choon Hong5

1Highland Agriculture Research Center, NICS, Pyeongchang 232-955, Korea
2National Institute of Horticultural & Herbal Science, Suwon 440-706, Korea

Abstract. This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenray ‘Ligularia stenocephala’. When the root-zone was cooled with 240 L/hr flow rate of 13°C ground water using water hose, the temperature was lowered approximately by 2 to 3°C than that of control. The growth of narrowhead goldenray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to 22°C diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by 0.5°C and 3°C compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenray leaves. This system might be practically used both at summer and winter season for the cultivation of narrowhead goldenray by part cooling or heating around root-zone and plant canopy.

Key words: hose, Ligularia stenocephala, local cooling, nutriculture bed

*Corresponding author: kkd11414@korea.kr
Received April 26, 2011; Revised June 17, 2011;
Accepted June 20, 2011
군단비 여름재배 시 생장방법과 냉수호스배드재배가 생육 및 미기상에 미치는 영향

1. 냉방방법에 따른 군단비 생육 및 미기상 변화

 밭에서 채취한 군단비 묘를 고령지농업연구센터의 대란형 시험포장에 2007년 5월 23일에 조간 30cm × 주간 20cm 간격으로 이식하였다. 여름철 군단비 재배 시설 내 난각 및 습도조절을 위한 환경조절방법으로, 무비가립, 냉수호스, 미스트, 포그 등 4가지를 두었으며, 모든 처리군은 Kim 등 (2007)의 결과를 토대로 차량을 약 50%의 흑색 차광망을 설치하였다. 지면은 잡초방지를 위해 흑색 무지경으로 덮었다.

 냉방을 위한 처리로 미스트는 미니스프링클러를 1.2m 간격으로 설치하여 낮 동안에는 10분간 간격적으로 가동하였으며, 포그는 원예용 초음파방충방해기로 낮 동안에는 10분간 10분격정의 스케줄로 가동하였다. 냉수호스 난각은 두께로 위치 2층으로 설치하고 약 13°C의 저온을 약 240L/hr의 유속으로 퍼트리 하였다.

 냉방방법별 미기상변화를 알아보기 위하여 은숙도를 지상 30cm 부위에서 온도 및 상대습도 센서 (Watchdog model 450, Spectrum co.)로 측정하였으며, 초장, 주중 등 군단비의 생육을 조사하였다.

2. 재배방법에 따른 군단비 생육 및 미기상 변화

 2.1 수경체배시설의 설치, 정식 및 급액관리

 수경체배를 위한 폐경화방겨 배드로서 호스 배드는 지면을 배.bad를 실로 있도록 약간 경사지게 고른 후에 직경 15cm 정도의 호스를 1.2m의 배드폭 남아로 나란히 놓고 호스에 물을 참가하여 난 다음, 그 위에 비닐을 깔고 10cm 두께로 폐경화방겨를 채워 배지로 사용하였다. 스토리포드 배드는 40mm의 경질 스토리포드 판으로 폭 1.2m, 높이 15cm의 배드를 만들여 설치하였다.

 재배방법별 군단비의 생육과 미기상 변화를 알아보기 위한 시험은 약 50% 흑색차광망으로 차량된 미가림하우스에서 수행되었다. 밭에 정식하여 1년 정도 자란 군단비 묘를 캐리 2008년 6월 30일에 정식하였다.

 정식 시 불어있던 잎들은 풀착하여 신초가 보였을 때 제거하였다. 양분으로서 토양배추는 Mo 등 (1999)의 공식배추에 사용했던 원시표준액 (N-P-K-Ca-Mg = 15-3-6-8-4, me/L)의 50배액을 만들어 2주마다 1회 관비하였으며, 원수는 관행에 준했다. 호스배드 및 스
티로폼베드 등 수경체배구는 위의 표준액을 점적호스로 하루에 10분씩 3회 급액하였다.

2.2 냉수호스 이용 수경배배 냉각
체배방법별 국소부위 냉각효과를 알아보기 위해서 3처리 모두 직경 10cm의 호스를 베드와 지면 또는 수경체배배 위치 두 줄로 나란히 설치하고 약 240L/hr의 유속으로 계곡수를 흘렸다. 특히 호스베드는 토양체배나 스티로폼베드와는 달리 계곡수가 베드측면의 호스를 두고 표면의 호스를 거쳐 배출되도록 하였다. 계곡수 유입부의 유량 조절을 위해 열려진 냉각수 유입부는 냉각수가 원활하게 흐를 수 있도록 40cm 정도 높게 설치하였다(Fig. 1).

2.3 냉각영양 분석, 미기성 계층 및 생육조사
본 실험에 사용한 냉수호스베드의 열교환량은 다음과 같이 호스입구와 출구의 운도차 및 유량에 따라 결정되었다.

$$Q = mw \cdot cw(\theta_b - \theta_i)$$ \hspace{1cm} (1)

여기서 Q: 열교환량(kcal/hr), mw: 물의 질량유량 (kg/hr), cw: 물의 비열(kcal/kg°C), \(\theta_b\), \(\theta_i\): 각각 냉각수 출구와 입구의 운도(°C)이다.

비가량화수에 두 꼬부는 RDA(2007)의 방법에 따라 다음과 같이 계산하였다.

$$Q = Ag \times [(Kw \times Aw/Ag + 3.1) \times (To - Ti) + Rs \times (1 - \eta) - 44.8]$$ \hspace{1cm} (2)

여기서 Q: 냉방부하(kcal/hr), Ag: 온실박막면적 (m²), Kw: 열전류율(kcal/m²hr°C), Aw: 온실표면적 (m²), To: 주간의 최고외기온도(°C), Ti: 주간의 실제점화온도(°C), Rs: 단위면적 당 1시간 동안의 최대일사량 (kcal/m²hr), \(\eta\): 차량율이다.

냉수호스를 이용한 수경체배배시스템에서의 운도 변화를 알아보기 위하여 데이터로기(Almemo 5690, Ahlbom)를 활용하여 수온 및 기온을 측정하였으며, 초장, 주중 등 곤달비의 생육을 조사하였다.

#시험결과 및 고찰

1. 냉각방법에 따른 곤달비 생육 및 미기상 변화 특성

냉각방법별 곤달비의 생육은 냉수호스 > 미스트 > 무비가림 > 포그 순으로 좋았으며(Table 1), 계배비가계의 습도가 대체로 높았기 때문에 포그 효과는 덜 나타났다(Cho 등, 1994). 13°C의 냉수를 약 240L/hr의 유속으로 냉수호스에 흘려 냉각시켰을 때 지온이 약 2~3°C 낮아졌다(Fig. 2B). 이와 같은 운도 하강 효과 때문에 냉수호스 냉각처리에서 곤달비의 생육이 좋았을 것으로 추정된다. 다만 곤달비 규력부위인 지상 30cm의 기온은 포그나 냉수호스에 비해 미스트에서 낮았는데, 냉수호스에서의 열교환에 의한 냉각도가 미스트의 냉수에 의한 직접냉각과 증발냉각에 의한 냉각도를 따르지 못하기 때문으로 판단된다(Fig. 2A).

한편 지상 30cm 부위에서 측정된 습도는 냉수호스 에서 가장 낮았고 미스트에서 가장 높게 나타났다. 이들 냉각처리는 무처리에 비해서는 다소 높은 결과를 보였으나 큰 차이는 보이지 않았다(Fig. 2C). 그러나
곤달비 여름재배 시 냉각방법과 납수호스배배가 생육 및 미기상에 미치는 영향

<table>
<thead>
<tr>
<th>Table 1. The growth of narrowhead goldenray as affected by cooling methods.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling methods</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Water cooling hose</td>
</tr>
<tr>
<td>Mist</td>
</tr>
<tr>
<td>Fog</td>
</tr>
</tbody>
</table>

*Without cooling.
*Mean separation within columns by Duncan’s multiple range test at 5% level.
*Transplanting date: May 23, 2007.

미스트 처리는 납수를 직접 없애 실수하여 냉각하는 방식으로서 납수효과가 좋았음에도 불구하고 납수호스에 비해 생장이 다소 나쁘게 나타났는데, 미스트에 의해 원래가 있던 불가역 적재가 아니라 생장이 역제되기 때문이 아님이 추정된다(Choi 등, 2000).

한편 냉각방법에 따라서 2007년 7월 6일의 자온은 최저 17℃에서 최고 21℃ 범위에서 일정 변화하였다. 처리별 온도차이는 크게 보이지 않았으나 가온과는 달리 납수호스에서 다소 낮게 유지되었다(Fig. 2B). 이와 같은 결과는 호스방각은 양호안에 의해 납수는 받아난 큼지막한 논방각호스가 야간에 설치되어 있어서 대양방식에 비가 지연되면서 직접적으로 도달되는 것을 차단하기 때문에 자온상승이 더 적게 되어 나타난 결과로 판단된다. 이처럼 호스방각은 특별한 장치를 활용하여 시설의 상대습도를 높이고 온도를 낮추는 포그방방(Choi 등, 2004)과 달리 특별한 장치 없이 경제적으로 재배시설의 온도를 낮출 수 있는 냉각방법으로 판단된다. 또한 열매환량은 납수화 관류량이 많고, 열매환량이 낮은 수록 증가(Nam과 Kim, 1994; Park 등, 1994)하므로 유량과 백고수의 양을 증가시키면서 더 높은 온도하강 효과를 얻을 수 있을 것으로 판단된다.

2. 호스를 이용한 국부냉방 폭염화방예방재배효과 납수호스를 이용한 국부냉방방식을 활용하여 곤달비 재배에서 문제로 되는 연작장애의 문제가 더했음을 관찰하여 지속하기 위하여 새로운 형태의 간이 수경재배법을 개발하고자 하였다.

농업용호스를 이용한 국부냉방 폭염화방예방재배방은 일반적으로 냉각에서 비용이 많이 들어가는 스티로폼비배의 문제점을 해소하면서 여름철 또는 가온철에 지하수 또는 개곡수 등 자연에너지로 활용하여 납수할 수 있고, 아울러 섭취, 해체가 용이한 간이레스스템으로 개발되었다.

본 시스템에서 배치에 직접 적용한 폭염화방예방은 양계배 배치로서 Mg, Ca, NH₄-N 등의 양이온의 출처가 많아지거나(Jeon 등, 2004) 변경되는 등(Kim 등, 2000) 당소의 단점은 있으나 3년 동안은 안정적으로 활용할 수 있다(Mo 등, 1999). 또한 배치로 사용 후 발에 환원하여 유기물로 재활용 할 수 있으며 토경으로 전환하기가 용이하다.

본 연구에서는 새롭게 고안된 호스배와 스티로폼비배의 납수효과에 의한 납수효과를 알아보고 시 납수수의 온도 및 균열부위 온도의 변화와 곤달비 생육을
Fig. 3. The changes in the inlet and outlet water temperature in hose bed system from Aug. 3 to Aug. 9, 2007.

조사하였다. 냉각수의 유입부와 유출부의 일중온도는 각각 14-22°C 범위, 13-29°C 범위에서 변화하였다 (Fig. 3). 유출수의 온도가 높아진 것은 시설내에서 열 교환에 의한 증가로 상승한 열량만큼 시설 내 온도가 낮아지는 것을 기대할 수 있다. 여기서 냉각용수의 일 중 온도변화가 커도 이유는 시험에 사용되었던 계곡수의 수량이 많지 않아 일사에 의한 계곡수의 수온변화가 컸기 때문이다. 이러한 문제는 수량이 풍부하거나 울창한 숲을 흐르는 계곡수를 활용하면 완화될 수 있 을 것으로 판단된다.

호스베드와 스티로폼베드간의 근권부의 온도를 살펴 보면(Fig. 4B), 냉수의 온도가 14-22°C 범위로 공급 되었을 때 베드 근권부 온도가 18-23°C로 유지되어 냉수호스에 의한 냉각효과가 인정되었다.

베드 30cm 상단에서 측정한 곤달비 근막부위의 온 도는 스티로폼베드에 비하여 호스베드에서 약 0.5°C, 근권부의 온도는 약 3°C 낮게 나타났다. 이러한 차이는 호스베드의 측벽이 냉각호스로 되어 있어 방열 면적이 스티로폼베드보다 넓았기 때문으로 보인다. 베 드근권부의 온도차에 비해 근막의 기온의 차가 적게 나타난 것은 센서의 위치가 베드 표면 위 30cm 위처 에 있었는데 완전하게 근막이 형성되지 않은 상태였으 며, 처리구를 동일한 시설공간에 두었기 때문에 공기가 유 동에 의해 냉각효과가 상쇄되었기 때문이었다. 그 결과가 뚜렷하게 확인할 수 있을 것으로 추정된다. 이처럼 냉 수에 의한 냉각 효과는 지중에 제설한 승수호스에 약 15°C의 저하수를 250L/hr로 홀렸을 때, 지온을 약 4°C 낮을 수 있다는 Han 등(2008)의 보고와 유사 한 결과이다. 또한 양액배드의 내부에 15mm PE관 2 줄을 매설하고, 배드 표면에 10mm PE관을 설치하여 10-20°C의 냉각수를 순환시켰을 때 배드온도를 20-23°C로 유지할 수 있다는 Pack 등(2010)의 보 고에서도 국부냉방의 효과가 짙음을 밝혔다.

본 시험에 설치한 냉각호스의 방열면적을 살펴보면, 베드 상단에만 냉각호스(Φ10cm)가 설치된 스티로폼베 드의 방열면적(56.5m²)보다 베드 전체 격열 냉수호스 (Φ15cm)와 베드 상단의 냉각호스(Φ10cm)가 설치된 호 스베드의 방열면적(141.3m²)이 약 3배 넘었기 때문에 근권의 온도가 더 낮았던 것으로 판단된다.

시설의 폭이 6m, 길이가 30m이고, 앞뒤와 측면이 열려 있는 비가람하우스에서, 대관령의 주간 최고온도 를 30°C, 실내 설정온도를 20°C, 최대 일량을 750kcal/m²_hr, 열전달을 5.7kcal/m²/hr, 차량을 60%, 온실표면적 156m²를 적용하고 앞의 (2)식에 따라 재 배시설의 냉방부하를 이론적으로 산출하면 54,677kcal/ hr이다.

또한 Fig. 3의 냉각수 온도변화로부터 (1)식에 따라

Fig. 4. The changes in air temperature (A) in plant canopy and root-zone temperature (B) as affected by local hose-cooling.

병각영양을 계산하면, 계곡수를 240L/hr의 속도로 호스에 흘렸으므로, 일종 냉각수의 염구온도와 출구온도의 변화를 토대로 계산하였을 때 난 동안의 냉각영양이 약 1,500kcal/hr이었고 3개의 배드를 설치한 시험내 전체 냉각영양은 약 4,500kcal/hr이었다. 즉, 병렬면적이 총에도 불구하고 240L/hr의 유효량으로는 시설 냉방부하량 54,677kcal/hr를 충족시키지 못하는 것으로 계산된다. 이와 같이 시설 전체를 냉방하는 것은 다소 한계가 있다고 판단되므로 작동이 자라 있고 있는 부위의 국부냉방 방식으로 접근하는 것이 더 효율적이라 생각할 수 있다.

냉각영양의 증가는 통과량이 많을수록 단위면적당의 열교환양이 증가하고(Nam과 Kim, 1994), 615cm PE판을 사용한 수경재배 밴드의 국부냉각 시 적정 공급량을 2본/hr(Pack 등, 2010) 정도로 밝혀졌으며, 본 시험에 적용한 유량이 240L/hr는 2본/hr의 1/5수준으로 매우 적었으나 병렬면적이 넓으므로, 유효량을 그 이상으로 충분히 늘려도 호스냉각에 의한 배드부분 국부냉방으로 충분히 적당한 온도관리가 가능할 것으로 판단된다.

이와 같은 온도 하강 효과는 곤달비의 생육에 영향을 미쳐 냉수호스배드에서 다소 양호한 것으로 나타났으나(Fig. 5) 처리 간 큰 차이를 나타내지는 않았다. 곤달비는 원동천의 고수분에 흔히 되어 지란 것을 수확하여 이용하는 산재료로 여름철에는 죽지아래 때문에 생육이 매우 불량한 특성을 가지고 있다(Kim 등, 2010). 본 시험에 사용한 곤달비 묶는 밭에서 자라 있고 있는 것을 본에 캐이 바로 정식하였기 때문에 이식품상의 이

예 생육이 전체적으로 지연되었다. 늑가을 휴무율을 캐어 저장한 곤달비 종근을 활용하면 국부냉방의 효과가 크게 나타날 것으로 생각된다.

여름철 재배에서 지하수에 의한 냉방효과는 잘 알려져 있다(Sasaki 등, 1989; Park 등, 1994; Nam 등, 2005; Pack 등, 2010). 냉방을 위한 맥대한 양의 지하수를 확보하는 것은 현실적으로 매우 곤란하여 지하수를 효율적으로 활용하고자 하는 연구도 진행되었다(Nam과 Kim, 1994). 계곡이 많은 고프지에서는 위치에우리를 이용하여 무동력으로 계곡수를 호스배드에 순환시켜 냉각하는 것도 아니지 감각차원에서 관심받는다.

또한 병렬면적이 증가하면 열교환량이 증가하나 현실적으로 기존의 설비방식에서는 비용이 추가되므로 무한정 확대하기는 곤란하다. 따라서 갤러게 구할 수 있는 농업용 호스를 이용하여 저렴하게 병렬면적을 최대화할 수 있는 갈데호스배드 방식이 생산성을 낮추면서 효율적으로 냉방할 수 있는 좋은 대안이 될 것으로 판단된다.

Nelson(1991)도 증발방하 등 설비를 이용하여 냉방할 경우, 이론적으로는 실내온도는 외부 습도온도까지 낮출 수 있으나 2~3℃ 낮게 유지관리하는 것이 오히려 경제적임을 강조한 바와 같이 특수한 목적 이외의 일반 재배에서는 무리하게 많은 경비를 들여 냉방할 필요는 없다. 이에 곤달비처럼 카스 작은 작물의 재배는 식품재 부위 국부냉방으로도 효과를 얻을 수 있다.

다구나 시설환경조건 측면에서 볼 때, 예전에는 시설 전체의 환경을 조절하고자 하였으나, 최근에는 에너지 절약차원으로 국부 난방 또는 냉방연구가 진행되고 있는 추세이다.

본 연구에서 개발된 국부냉방을 위해 호스배드시스템은 카스 작은 염채류 재배에 적용하기에 적합하며 곤달비뿐만 아니라 흡수성 채소인 상추, 쩐채소 등 염채류의 고온기 생산에 널리 활용될 수 있다. 호스배드는 저온기에는 난방수를 순환하여 벌도의 방열배판 없이 국부난방에도 활용할 수 있어 에너지를 절약하면서 재배할 수 있는 경제적인 간이 양액재배법으로서 널리 활용될 것으로 기대된다.

적요

본 연구는 여름철에 신선한 곤달비를 생산하기 위하여
여, 몇 가지 냉각방법에 따른 제해효과를 검토하고 베드의 구조물 및 냉각수단으로서 호스를 이용한 경제적
인 폐열화장제 간이수체제베드를 개발하기 위하여 수행하였다. 냉각방법별 곤달비의 생육은 냉수호스, 이스
트, 무기비갈 순으로 좋았으며, 13°C의 저수확을 약
240hr의 유속으로 홍련 냉각시켰을 때 지온이 약
2-3°C 낮아졌다. 여름계시 시 균열부의 부분냉방을 위
해 개발한 호스베드시스템은 615cm의 냉각호스용 측
변과, 유가비지로 폐열화장제가 이용된다. 냉수호스베드
에서 냉수의 온도가 14-22°C 범위에서 공급되었을
때 배지의 온도는 18-23°C로 유지되어 냉각효과가 양
호하였으며, 스타로폼베드에 비하여 호스베드의 곤달비
균열부위의 온도는 약 0.5°C, 균열부의 온도는 약
3°C 낮은 등 냉각효과가 있었다. 국부냉방을 위한 호
스베드시스템은 곤달비와 같은 기가 작은 엽체류의 여
름절 재배에 활용할 뿐 아니라 저온기에는 난방수를
순환하여 냉도의 방열배관이 국부냉방에도 활용할 수
있어 경제적인 간이양액재배베드로서 활용될 것으로 기
대한다.

주제어 : 곤달비, 국부냉방, 수경재배 베드, 호스

인용문헌

growth and yield of tomato and pepper grown in summer season greenhouse culture. Kor. J. Hort. Sci.
cooling in the summer season cultivation of watermelon. JRES Annual Report pp. 511-522.
tion and monitoring of bank filtration (including alluvial and riverbed deposits) source heat pump cooling
fresh leaves in summer season. GARES Annual Report pp. 450-453.
Year-round production of fresh leaves of narrowhead goldentray 'Ligularia stenocephala' by using stored
in protected horticulture during summer season. NIHHS Annual Report pp. 820-826.
thesis. Gangwon National Univ.
effective cooling system for greenhouse cooling by heat-exchange method with ground water. NIHHS
Annual report pp. 1002-1009.