고속국도 줄눈 콘크리트 포장 성능보증 기준 연구
A Study on Performance Warranty Criteria for Expressway Jointed Concrete Pavements

여현동 Yeo, Hyun Dong

인덕순 Ahn Deok Soon

서영찬 Suh, Young Chan

정진훈 Jeong, Jin Hoon

ABSTRACT

Recently, researches to introduce the performance warranty contract are in progress for quality improvement of road pavements. The performance warranty contract is a type of contract in which contractors guarantee to maintain certain level of performance during a period from completion of construction. The contract use in Europe and the U.S is being increased because it has been known to contribute to improvement of structure quality, reduction of life cycle cost, development of construction techniques, and etc. The research on performance indicators, threshold values, and warranty durations is essential to effectively introduce the contract in Korea. In this study, literatures on the performance warranty contract for concrete pavements of the Minnesota, Indiana, and Florida of the U.S. were reviewed. Major distresses influencing the pavement performance were investigated and analyzed in the jointed concrete pavement sections of 21 Korean expressway routes to be compared to the performance indicators, threshold values, and warranty durations of the states. More accurate comparison is expected by investigation in planned sections for a long time.

KEYWORDS

expressway, jointed concrete pavement, performance warranty criteria, performance indicator, threshold value, warranty duration

요지

최근 들어 도로포장의 품질 개선을 위해 성능보증 계약제도를 도입하려는 연구가 활발히 진행되고 있다. 성능보증 계약제도는 구조물이 준공 이후로 일정한 용량기간 동안 미리 정해진 성능수준을 유지할 것을 시공자가 보증하는 계약의 한 형태이다. 성능보증 계약제도는 구조물의 품질보장, 생애주기비용의 절감, 시공기술 개발 등에 기여하는 것으로 알려져 유럽 및 미국에서 사용이 증가되고 있다. 이 계약제도는 국내에 효과적으로 도입하기 위해서는 도로포장의 성능지수, 임계한도, 그리고 성능보증 기간에 대한 연구가 반드시 필요하다. 본 연구에서는 미국 미네소타, 일리노이, 플로리다 주의 콘크리트 포장 성능보증 계약제도에 관한 문헌을 조사하였다. 국내 21개 고속국도 노선의 줄눈 콘크리트 포장 구간에서 포장성능의 방향을 미치는 주요 파손를 조사 및 분석하여 생성의 성능지수, 임계한도, 그리고 성능보증 기간과 비교하였다. 개선된 구간에서 잠기기간에 걸쳐 조사가 실시된다면 보다 정확한 비교가 가능할 것으로 예상된다.

핵심어항

고속국도, 줄눈 콘크리트 포장, 성능보증 기준, 성능지수, 임계한도, 성능보증 기간

1. 서론

1.1. 연구배경 및 목적

최근 도로포장을 비롯한 건설 각 분야에서는 성능보증 계약제도를 도입하기 위한 연구가 진행되고 있다. 도로 포장의 성능은 파손의 정도, 노면의 평탄성, 마모성 또는 마찰 등 포장의 공용성과 관련된 특성을 일컫는다. 성능
보증 계약제도는 계약자로 하여금 발주자가 제시하는 일정 수준 이상의 성능을 일정 기간 동안 유지하고, 자유롭게 재료와 공법을 선택할 수 있는 기회를 부여하여 신기술 및 신공법을 지식적으로 개발하도록 하는 제도이다. 계약자는 이 제도를 통해 건설비용을 절감하여 이익을 증대할 수 있고 발주자는 적은 유지관리 비용으로 좋은 품질의 결과물을 얻을 수 있는 장점을 갖게 된다.


이러한 성능보증 계약제도 도입을 위해서는 성능보증 시범도의 주요한 내용이 되는 성능인자, 임계한도, 그리고 성능보증 기간에 관한 연구가 반드시 필요하다. 여기서 성능인자는 성능보증 계약이 체결된 도로포장의 성능을 평가하기 위한 항목으로 미국의 경우는 주요 곡면, 평탄성 등이 이에 해당된다. 각 성능인자 별로 허용되는 한계를 임계한도라고 하며 임계한도 뒤에서 성능이 유지되지 않게 성능보증 기간이라 한다.

본 연구에서는 국내 고속도로 콘크리트 포장에 발생하는 주요 파손의 중류 별로 재료에 따른 파손 정도를 분석하고 해외 성능보증 시범도에 정기적으로 성능인자, 임계한도, 성능보증 기간과 비교하여 국내 고속도로에 적합한 성능인자, 임계한도, 성능보증 기간을 정하는 자료로 사용할 수 있도록 하였다.

1.2. 연구범위 및 방법

본 연구에서는 고속도로 콘크리트 포장에 대한 성능보증 시범도의 중요한 요소인 성능보증 기간을 수립하기 위하여 유럽 및 미국 여러 주의 사례에 대한 문헌조사를 통하여 성능인자, 임계한도, 성능보증 기간을 조사하였 다. 국내 고속도로의 HPMS(Highway Pavement Management System)의 조사항목과 HPIC(Highway Pavement Condition Index)에 포함된 평가항목을 조사하였다. 88울림북선, 경부선, 고창 - 함양선, 구과선, 남해선, 남해 제2지선, 담쟁 - 상주선, 대전 - 남부 순환선, 대전 - 동영선, 중부선, 동해선, 무안광주선, 서울외곽순환선, 서해안선, 영동선, 울산선, 익산 - 포항선, 제2부선, 중부 내륙선, 중앙선, 중앙선의 지선, 평택 - 용성선, 호남선, 논산 - 천안선 등 21개 노선의 분석기준 구간을 제외 3년에서 10년까지 재료별로 구분하여 파손을 분석하였다. 조사구간에 발생된 각종 파손의 평균값으로만 결과를 제시한 기준과는 달리 본 연구에서는 주요 파손을 재료별로 정규분포화하여 통계적으로 분석하였으며, 그 결과를 해외 성능보증 시범도에 사용되고 있는 성능인자, 임계한도, 성능보증 기간과 비교하였다.

2. 사례 조사

2.1. 국내 하자담보 책임제도

성능기준과 관련된 기존 도로포장의 계약 제도에는 하자담보 책임제도가 있다. 하자담보 책임(Defect Liability)이라면 공사 목적물이 완성되기 이전 또는 완성된 이후 그 목적물의 사용가치 혹은 교환가치를 저하시키는 하자에 대한 수급인의 책임을 말한다. 이는 발주자의 권리를 보호하기 위한 목적외에도 수급인이 임정기간 동안 목적물에 대해 하자담보 책임을 지도록 하여 공종의 안전에 위해를 미칠 가능성이 있는 시설물의 하자에 대한 보수 책임을 법률적으로 명확히 함으로써 하자의 보수책임자를 신속히 결정하려는 목적을 동시에 가지고 있다(이응종, 2001). 공공 부문의 하자보수는 1차적으로 공공회사가 이행하도록 하고, 이행하지 않을 경우에는 하자보수보증으로 이행을 강제한다. 하자보수보증은 공공회사의 하자보수 불이행에 대비하기 위한 것으로, 불이행 시 실제 손해 발생액에 관계없이 보증금이 발주자에게 귀속된다.

국내 건설공사의 하자담보 책임기간은 공사종류 별로 국가를 당사자로 하는 계약에 관한 법률 시행규칙 제별 1에 따라 1년~10년으로 정해져 있으며, 「건설산업기본법」, 「공사계약법」 및 「공동주택관리법」 등에서는 최고 10년으로 규정되어 있다(박성민 등, 1999). 포장공사의 하자담보 책임기간은 포장형식 및 공사규모에 따라 달라질 수 있으며, 이는 기간의 성능이 요구되는 도로포장의 특성을 고려할 때 적합하다. 또한, 현행 하자담보 책임제도는 포장공사의 하자기준에 관한 근거가 명확하지 않아 분쟁의 소지가 있으므로 이에 대한 보완이 필요한 실정이다.

2.2. 해외 성능보증 계약제도

미국 여러 주의 사례를 조사한 결과, 35개 주에서 성능보증 계약제도를 도입하여 사용하고 있는 것으로 나타났다(Gharraibeh 등, 2008). 하지만, 미네소타, 워스 콘선, 인디애나, 일리노이, 미시간, 플로리다, 유타 주
表 1. 미국 각 주의 성능보증 기간, 분석기준 구간길이, 분석자료(Gharaibeh 등, 2008)

<table>
<thead>
<tr>
<th>구분</th>
<th>미네소타</th>
<th>인디애나</th>
<th>플로리다</th>
</tr>
</thead>
<tbody>
<tr>
<td>성능보증 기간</td>
<td>5년</td>
<td>5년</td>
<td>5년</td>
</tr>
<tr>
<td>분석기준 구간길이</td>
<td>160m (0.1mile)</td>
<td>160m (0.1mile)</td>
<td>160m/차로 (0.1 lane mile)</td>
</tr>
<tr>
<td>분석자료</td>
<td>PMS 자료</td>
<td>PMS 자료</td>
<td>재량 3~5년 포장</td>
</tr>
</tbody>
</table>

미네소타, 인디애나, 플로리다 주의 성능보증 시험에서의 성능보증시간은, 일체단행, 성능보증 기간 등이 제시되지 않고 있다. 본 연구에서는 콘크리트 포장에 대한 성능보증 계약제도가 정착 단계에 있는 미네소타, 인디애나, 플로리다 주의 자료를 수집하고 분석을 실시하였다(Brautigam, 2007; Ferragut, 2003; Gharaibeh 등, 2008; Minnesota DOT, 2001).

미네소타, 인디애나, 플로리다 주는 표 1과 같이 5년의 성능보증 기간을 적용하고 있으며, 분석기준 구간은 160m(0.1mile)로 동일하다. 미네소타와 인디애나 주는 PMS 자료를 일체단행 분석에 사용하고 있고 플로리다 주에서는 재량 3년~5년의 포장에 대한 측정자료를 사용하고 있다(Gharaibeh 등, 2008).

표 2. 미국 각 주의 성능보증과 일체단행(Brautigam, 2007; Ferragut, 2003; Minnesota DOT, 2001)

<table>
<thead>
<tr>
<th>성능보증 기간</th>
<th>분석기준 구간길이</th>
<th>하용 안장</th>
<th>플로리다</th>
</tr>
</thead>
<tbody>
<tr>
<td>성능보증 기간</td>
<td>5년</td>
<td>5년</td>
<td>5년</td>
</tr>
<tr>
<td>분석기준 구간길이</td>
<td>160m (0.1mile)</td>
<td>160m (0.1mile)</td>
<td>160m/차로 (0.1 lane mile)</td>
</tr>
<tr>
<td>분석자료</td>
<td>PMS 자료</td>
<td>PMS 자료</td>
<td>재량 3~5년 포장</td>
</tr>
</tbody>
</table>

미네소타, 인디애나, 플로리다 주의 성능보증 시험에서의 성능보증기준은, 일체단행 성능보증시간이 있는 반면 그렇지 않은 성능보증시간도 있었다. 기준은 세 주에 공동적으로 포함되는 성능보증기준은 옵션에 따라 성능보증기준을 나타내며, 성능보증기준은 미네소타와 인디애나 주에서, 스필링과 부서진 슬래브는 미네소타와 플로리다 주에서 사용되고 있다. 미네소타 주는 내구성(D) 굴절, 우각부 파손, 폭 아웃, 기능상실 중 하나, 폭 굴절을 성능보증기준으로 사용하고 있으며, 인디애나 주는 국제평판성지수(International Roughness Index: IRI)와 마찰 지수(Friction Number)를 성능보증기준으로 사용하고 있다. 또한, 플로리다 주는 주행 안정성(Rideability)을 하용안장으로 정의하고 있다.

표 2에서 보듯이 인디애나 주에서는 종방향 굴절이 하용되지 않고 있으며(Ferragut, 2003), 미네소타 주는 5년의 성능보증 기간 안에 종방향 굴절을 중간이가 분석기준 구간의 5%인 8.0mm를 초과하지 않도록 일체단행 정하기도 있다(Minnesota DOT, 2001). 플로리다 주는 종방향 굴절을 포함한 모든 종류의 굴절에 대해서 폭 3mm를 초과하는 굴절을 4개까지 하용하고 폭 5mm(3/16inch)를 초과하는 굴절은 하용하지 않고 있다(Brautigam, 2007). 미네소타와 인디애나 주에서는 종방향 굴절이 하용되지 않으며, 플로리다 주에서만 일체단행 정하기도 정의하고 있다(Ferragut, 2003; Minnesota DOT, 2001; Brautigam, 2007).
3. 포장파손 조사 및 분석
3.1. 줄눈 콘크리트 포장의 주요 파손

한국도로공사에서 운영하고 있는 HPMS에서는 전국고속도로에서 발생하는 파손을 지속적으로 조사하고 있다. HPMS를 통해서 조사된 자료를 근거로 HPCI를 산정하여 고속도로 각 노선과 구간의 포장 상태를 평가하고 있다(박성태 등, 2007). 표 3은 HPMS에서 사용하고 있는 줄눈 콘크리트 포장의 포장조사항과 HPCI에 포함되는 평가항목을 정리한 것이다.

한국도로공사와 조사항목과 평가방법을 통일하여 일관성 있는 조사와 평가를 하기 위하여 HPCI에 포함되어 있는 포장평가항목과 동일하게 줄눈 콘크리트 포장의 성능인자를 결정하였다. HPCI에서는 중량, 굴절, 평가항목, 내구성(D) 굴절, 스포링, 폐칭, 단면보수, 국제평판성지수가 콘크리트 포장 평가의 주요 항목에 포함되어 있다(박성태 등, 2007). 이 가운데 폐칭과 단면보수는 콘크리트 포장에 발생할 가능성이 있으나 보수 조치이므로 주요 파손에서 제외시키고, 3.2. 조사방법

도로현장에서 조사원들이 직접 육안으로 검점을 측정하던 기존방법과 달리, 현재 국내에서는 고해상도 라인 스캔 카메라와 레이저 센서가 발전된 차량으로 포장파손을 조사하고 있다. 조사구간을 사전 50km/h~60km/h로 추행하면서 고정 카메라로 포장면을 스캔하면서 차량 내 컴퓨터에서 이미지가 저장되고 이를 분석하여 포장면에 발생한 파손을 측정하게 된다. 이 외에도 레이저 센서도 이용하여 포장면의 곡률 및 변형을 측정하고 국제평판성지수를 계산한다.

고속도로에서의 포장파손은 그림 1과 같이 조사항목 중 최외곽 차로를 일정한 간격으로 분석구간 (100m)으로 나누어 조사하였다. 굴절은 종류에 따라 분석구간 구간당 발생한 간격 또는 변형으로 조사하고 국제평판성지수는 10m마다 측정하여 분석구간 구간 별 평균값으로 조사하였다.
조사된 포장파손 자료를 사용하여 재량별로 구분된 분석기준 구간(100m)의 파손량을 각각 구하였다. 국제 평균성주수의 경우는 10m 간격으로 측정한 후 분석기준 구간의 평균값을 계산하여 대표값으로 하였다. 각 분 석기준 구간의 파손량을 사용하여 재량별 전체 분석구간의 평균값 μ와 표준편차 σ를 구하고, 표준 정규화를 거쳐 50%, 90%, 95% 수준의 확률을 갖는 파손량을 각각 구한다.

다음 재량에도 불구하고 높은 재량보다 파손이 더 크게 나타난 경우에는 지나치게 큰 파손이 자료에 포함되어 있었다. 낮은 재량에 포함된 과대값을 제거하 기 위하여 95% 확률 수준의 5배를 초과하여 발생한 것으로 조사된 파손은 과대값으로 정의하고 분석에서 제외시켰다. 그림 2는 고속도로 총의 콘크리트 포장 스플링의 재량에 따른 변화를 과대값 제거 전과 제거 후로 구분하여 보여주고 있다. 그림 2(a)와 같이 과대 값 제거 전 재량 7년과 8년에 발생한 스플링은 재량 9년보다 더 크게 분석되었다. 재량 7년과 8년에 과대값이 존재한다고 판단하고 95% 확률 수준의 5배를 초과 하는 자료를 제거하였다. 그 결과 그림 2(b)와 같이 재량 7년과 8년에 발생한 스플링이 재량 9년보다 낮게 조정되었다.

4. 분석 결과

4.1. 중방향 균열(Longitudinal Cracking)

분석기준 구간 당 발생한 중방향 균열의 길이는 그림 3과 같이 재량에 따라 변화를 가라앉는 것으로 나타났다. 재량 3년, 4년, 6년에 조사된 균열 길이가 재량 7년보다 더 길어졌는데, 이는 재량 7년에 해당하는 자료가 707 개로 다른 재량의 평균 2,000여 개에 비해 매우 적었기 때문에일 수 있다. 재량 7년에 대해서 더 많은 자료를 수집하여 분석을 실시한다면 개선된 결과를 얻을 수 있다고 판단되었다. 95% 확률에서 100m 분석기준 구간 당 발생한 중방향 균열 길이는 재량 9년과 10년 사이에 2.89m에서 4.43m로 가장 크게 증가했다. 본 연구에서 분석된 한국도로공사 HIPMS의 균열 자료는 균열폭은 고려하지 않고 균열 길이만을 조사하였으므로 균열폭을 고려하는 플로리다 주의 임계한도선 비교가 불가능했 다. 플로리다 주 등과의 비교를 위해서는 균열폭에 대한 조사도 필요한 것으로 판단된다. 미래라와 주는 재량 5 년에 분석기준 구간 160m(0.1mile)의 5%인 8.0m를 임
계단도로 제시하였다. 국내 고속국도의 재량 5년의 중
방향 균열은 95% 확률에서 1.30m로 미네소타 주의 임
계단도에 크게 못 미치는 것으로 나타났다.

4.2. 횡방향 균열(Transverse Cracking)

분석기준 구간 당 발생한 횡방향 균열의 길이는 그림 4와 같이 재량에 따라 점차 증가하는 것으로 나타났다.
재량 4년과 6년에 조사된 균열 길이가 재량 7년보다 더
길았으며, 중방향 균열의 경우와 마찬가지로 자료의 수
가 원인이 수 있다고 판단되었다. 95% 확률일 때 100m
분석기준 구간 당 발생한 횡방향 균열의 길이는 재량 7
년과 8년 사이에 1.62m에서 3.60m로 가장 크게 증가
했다. 본 연구에서 분석된 횡방향 균열은 중방향 균열과
마찬가지로 균열폭은 고려하지 않고 균열 길이만을 조
사한 것으로 플로리다 주의 임계단도와는 비교가 불가
능했다. 미네소타와 인디애나주가 횡방향 균열을 하여
하지 않는 것에 비하여 국내 고속국도에는 균열이 발생
하는 것으로 나타났다.

그림 5. 분석기준 구간 당 재량에 따른 횡방향 균열 길이

4.3. 우각부 균열 (Corner Breaks)

분석기준 구간 당 발생한 우각부 균열의 길이는 그림 5와 같이 재량에 따라 점차 증가하는 경향을 보였다. 하
지만 재량 7년과 8년에 조사된 우각부 균열의 길이는
유난히 짧았는데, 이는 동일 구간을 장기간 동안 조사하
지 않고 다양 재량의 구간들을 한꺼번에 조사한 후 재
량별로 자료를 구분하여 분석하였기 때문으로, 파손이
매우 많거나 매우 적은 특이 구간들이 결과에 영향을 미
친 것으로 판단되었다. 95% 확률일 때 100m의 분석기
준 구간 당 우각부 균열의 길이는 재량 8년과 9년 사이
에 0.09m에서 0.15m로 가장 크게 증가했다. 본 연구에
서 분석된 우각부 균열 역시 균열폭은 고려하지 않고 길
이만 조사하였기 때문에 우각부 균열의 개수로 임계단
도를 정한 미네소타 주나 균열폭까지 고려하는 플로리
다 주와의 직접적인 비교는 불가능했다. 미네소타 및 플
로리다 주 등과의 비교를 위해서는 우각부 균열이 발생
한 슬래브 개수 및 균열폭에 대한 조사도 필요한 것으로
판단된다.

그림 6. 분석기준 구간 당 재량에 따른 내구성 균열 면적
4.5. 스플링(Spalling)

한국도로공사 HPMS에서는 스플링을 중량별 스플링과 황량량 스플링으로 구분하여 조사하고 있으나, 본 연구에서는 해외사례와의 비교를 위해서 중량별 스플링과 황량량 스플링을 하나의 스플링으로 합하여 분석하였다. 분석기준 구간 당 발생한 스플링의 길이가 그림 7과 같이 재량에 따라 점차 증가하는 경향을 나타냈다. 재량 7년에 조사된 스플링 길이가 다른 재량에 비해 많은 데 이는 앞서 언급한 것과 같이 상대적인 자료 부족 때문으로 판단되었다. 95% 확률일 때 100m 분석기준 구간 당 스플링의 길이는 재량 9년과 10년 사이에 0.72m에서 1.34m로 가장 크게 증가했다. 본 연구에서 조사된 스플링은 폭과 발생 위치가 고려되지 않아 미네소타, 플로리다 주와의 비교가 불가능했다. 스플링의 폭과 발생 위치에 대한 조사가 필요한 것으로 판단된다.

5. 해외사례와의 비교

표 4는 국내 고속국도 중소 콘크리트 포장에 파손이 가장 크게 증가하는 재량 및 그 패턴을 분석한 결과와 미국 미네소타, 인디애나, 플로리다 주의 성공보중 기간인 재량 5년에 발생한 파손 정도를 상위 95% 확률로 나타낸 것이다. 국내 고속국도 중소 콘크리트 포장에 파손이 가장 크게 증가하는 재량은 재량의 종류 별로 6년에서 9년까지로 다양하다. 재량 5년의 95% 확률로 분석하였을 때 중량별 균열은 분석기준 구간 100m 당 1.80m로 발생하여 표 2에 보인 중량별 균열을 허용하지 않는 인디애나 주의 입게한도를 초과했지만 미네소타 주의 입게한도인 분석기준 길이의 5.6m보다는 작았다. 황량량 중량은 2.03m는 이를 허용하지 않는 미네소타와 인디애나 주의 기준보다 컸고 균열폭은 고려하는 플로리다 주와는 비교가 불가능했다. 우각부 균열 0.10m와 내구성 균열 0.60m의 어느 주도 더 적절한 비교가 불가능했다. 95% 확률일 때 재량 5년 고속국도 콘크리트 포장의 스플링은 분석기준 구간 당 0.44m로 분석되어 길이 0.6m 이하 스플링의 중 길이를 3.6m(12피트)까지 허용하는 미네소타보다 적었다. 하지만 본 연구에서 조사된 자료에는 스플링의 폭이 고려되지 않았기 때문에 정확한 비교는 한계가 있었다. 또한 홈프리스와 해피스 이외 위치에서 발생한 스플링을 크게 볼 수로 구분하고 분석기준 구간 당 발생한 개수로 입계한도를 정하는 플로리다 주

<table>
<thead>
<tr>
<th>성장일자</th>
<th>파손이 가장 크게 증가</th>
<th>재량 5년</th>
</tr>
</thead>
<tbody>
<tr>
<td>재량</td>
<td>상위 95% 수준</td>
<td>상위 95% 수준</td>
</tr>
<tr>
<td>중량별 균열 (Longitudinal Cracking)</td>
<td>9년</td>
<td>2.89m</td>
</tr>
<tr>
<td>황량별 균열 (Transverse Cracking)</td>
<td>7년</td>
<td>1.62m</td>
</tr>
<tr>
<td>우각부 균열 (Corner Breaks)</td>
<td>8년</td>
<td>0.09m</td>
</tr>
<tr>
<td>내구성(D) 균열 (Durability Cracking)</td>
<td>8년</td>
<td>7.46m²</td>
</tr>
<tr>
<td>스플링 (Joint Spalling)</td>
<td>9년</td>
<td>0.72m</td>
</tr>
<tr>
<td>국제평탄성지수 (IRI)</td>
<td>6년</td>
<td>1.95m/km</td>
</tr>
</tbody>
</table>

그림 7. 분석기준 구간 당 재량에 따른 스플링 길이

그림 8. 분석기준 구간 당 재량에 따른 국제평탄성지수
와는 비교가 불가능했다. 국외판탄성지수는 95% 확률로 분석하였을 때 재설 5년 공속도에서 2.25m/km으로 분석되어 인디애나 주의 1.4m/km와 폴로디 주의 1.66m/km보다 큰 것으로 나타났다.

6. 결론
본 연구에서는 성능보증 계약제도를 국내 도로포장에 도입하기 위한 연구의 일환으로 먼저, 미국 미네소타, 인디애나, 폴로디 주 콘크리트 포장의 성능인자와 임계한도를 조사하였다. 국내 고속도로 좁은 콘크리트 포장의 주요 파손을 조사하고 수집된 자료를 95%, 90%, 50% 확률로 재설에 따라 통계적으로 분석하였다. 본 연구의 결론은 다음과 같다.

1. HPMS와 HPCI를 참고하여 국내 고속도로 좁은 콘크리트 포장 파손을 조사하고 전문가 의견을 수렴하
여 중앙형 굴절, 횡방향 굴절, 내구성(D) 굴절, 우각
부 굴절, 스폰결, 국외판탄성지수를 주요 파손으로
결정한 후 이에 대한 분석을 실시하였다.

2. 성능보증 기간을 결정하기 위하여 고속도로 콘크리
트 포장에 파손이 가장 크게 증가한 재설을 성능인자
별로 분석하였다. 그 결과, 중앙형 굴절과 스폰결은
9년, 우각부 굴절과 내구성 굴절은 8년, 횡방향 굴절
은 7년, 국외판탄성지수는 6년의 재설에서 가장 크
게 증가한 것으로 나타났다.

3. 95% 확률로 분석하였을 때 중앙형 굴절은 재설 5년
에 분석기준 구간 당 1.30m가 발생하여 이를 허용하
지 않는 인디애나 주의 임계한도를 초과할지라도 미네
소타 주의 임계한도보다는 작았다. 횡방향 굴절
2.03m도 이를 허용하지 않는 미네소타와 인디애나
주의 기준보다 컸고, 굴절폭을 고려하는 포괄적 주
와는 비교가 불가능했다. 우각부 굴절 0.10m와 내구
성 굴절 0.60m는 어느 주와도 적절한 비교가 불
가능했다. 95% 확률일 때 스폰결은 재설 5년에
0.44m로 미네소타 주에서 재설시 임계한도보다
작았다. 국외판탄성지수는 95% 확률과 재설 5년에
2.25m/km로 인디애나와 폴로디 주 보다 크게 나
타났다.

4. HPMS의 콘크리트 포장 조사는 중앙형 굴절, 횡
방향 굴절, 스폰결, 좁은 파손은 파손의 폭과 같은 손
상 정도에 상관없이 길이나면 면적 등만을 고려하였다.
하지만 미네소타, 인디애나, 폴로디 주에서는 파손
의 폭과 같은 손상도를 고려하고 경우에 따라 파손
발생위치로 구분하여 임계한도를 결정하므로 정확한
비교를 위해서는 조사항목을 추가할 필요가 있는 것
으로 판단되었다.

5. 본 연구에서 분석된 자료는 통일 구간에서 장기 조
사된 것이 아니라 다양한 재설의 여러 구간을 동시에
조사한 후 재설별로 구분된 것이다. 이로 인하여 재
설별로 자료의 수에 큰 차이가 있거나 분석결과에 영
향을 미칠만한 특이구간들이 존재하였다. 통일 구간
에서 장기에 걸친 조사가 이루어진다면 보다 합리
적인 경향을 얻을 수 있다고 예상된다.

김사의결
본 연구는 한국건설교통기술평가원의 포장성능에 근거한
사망기간 요소기술 개발 및 적용 연구과제(06기반구축A01)
5차년도 연구비에 의해 수행되었습니다. 자료를 제공해 주신
한국도로공사 및 (주)로드토리아에 감사드립니다.

참고 문헌
박상태, 박상욱, 장성혁, 조성천, 남효열, 박경원, 임성혁, 인
박용민, 김성한, 이예영, 이기형 (2001) 국내 하자담보책임
제도의 문제점과 성능보증 계약제도의 도입방안에 관한
연구, 대한건축학회 부산광역지의 논문집 6권 제1호
이종광 (2001) 건설계약 시공자의 하자담보 책임에 관한 연
구, 중앙대학교 석사학위논문
홍승호, 김준범, 김활기, 김병강 (2003) 포장 기능성 평가기
준 및 미크로 관리기준 설정 연구, 한국건설기술연구원.
Multi-parameter and Best-value Contracting, NCHRP Report
451, Transportation Research Board National Research
Council, Washington, D.C.
Draft Warranty Implementation Plan, FHWA/TX-050-4498-
P4, Texas Department of Transportation Research and
Technology Implementation Office, Austin, Texas.
Pavement Evaluation and Remedial Action, Florida DOT,
Tallahassee, Florida.
D'Angelo, J., Huber, G. A., Symons, M. G., Whited, G. C., Sumter,
R. K., Ramirez, T. L., Molenaar, K. R, Jones, D. R., Wood, J.
W., Bower, S. C., Steele, J. J., Rice, J. F., Russell, J. S. and
and Practice in Europe, FHWA-PL-04-002, U.S. Department
of Transportation Federal Highway Administration, Alexandria,
Virginia.


