Effective Harmony Search-Based Optimization of Cost-Sensitive Boosting for Improving the Performance of Cross-Project Defect Prediction

Duksan Ryu† · Jongmoon Baik††

ABSTRACT

Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.

Keywords: Cost-Sensitive Boosting, Cross-Project Defect Prediction, Harmony Search, Search-Based Software Engineering, Transfer Learning

1. Introduction

Software defect prediction (SDP) is an attractive field of study identifies defective modules. Software quality assurance resources for software inspection and testing are usually limited and thus they should be allocated with caution. Such valuable resources can be allocated effectively to defective modules identified by SDP. With insufficient
local data, a company can take advantage of Cross-Project Defect Prediction (CPDP), a way to construct a classifier using datasets collected from other companies. SDP has been studied on the basis of various machine learning algorithms. Most machine learning algorithms have used more than one parameter that significantly affect prediction performance depending on different values.

On software defect datasets, the ratio between the defective instance and the non-defective instance is not balanced. This problem called class imbalance causes the difficulty of prediction. One of the main methods to address class imbalance is cost-sensitive learning. Cost-sensitive learning indicates that the costs of incorrectly classified errors are non-uniformly treated while building a classification model. In other words, the importance of class identification is differently reflected into misclassification costs. In this context, it is desired for a classifier to produce high performance of the minority class (defect class) without seriously worsening the performance of the majority class (non-defect class) [1]. In cost-sensitive boosting methods, misclassification costs are easily integrated into the weight update formula. Most cost-sensitive boosting algorithms have only taken into account Within-Project (WP) data without external data. Ryu et al. [2] proposed a cost-sensitive boosting method for CPDP that is called Transfer Cost-Sensitive Boosting (TCSBoost) considering class imbalance in CP settings. It extracted additional cost parameters for instances with different distributional characteristics. For different CPDP settings, parameters should be tuned adaptively. If parameters can be adaptively tuned depending on different CPDP settings, predictive performance may be enhanced. In this study, we investigate if our parameter tuning technique based on Harmony Search [3] can provide high predictive performance in CP settings. We explore the following research questions:

- RQ1: Does Harmony Search technique effectively tune parameters of cost-sensitive boosting for CPDP?
- RQ2: Can the proposed method provide the predictive performance comparable to within-project defect prediction?

The objective of this research is to present a search-based optimization method effective for CPDP. We propose a novel approach called TCSBoost using Harmony Search (TCSBoost.HS) that tunes parameters of a cost adjustment function that significantly affect the performance of cost-sensitive boosting in CP settings. We use Jureczko datasets [4] for the experiments obtained from PROMISE repository [5]. The parameters assigning the correct/incorrect classification costs are related to the distributional characteristics and class imbalance. Using such domain knowledge, the size of the search space is reduced in the steps of initialization, range settings, and relative value settings between parameters.

To evaluate prediction performance, TCSBoost.HS approach is compared with TCSBoost and other classification techniques in CP and WP settings. We performed a statistical significance test and the effect size test. The experimental results show that TCSBoost.HS provides better defect prediction ability than CPDP models we compared with. In particular, it shows predictive performance similar to WPDP. As a result, our proposed approach can effectively help to allocate testing or inspection resources on defect-prone modules in CP settings.

The organization of the remaining sections is as follows. As a background, Harmony Search is explained in section 2. In section 3, we describe related work covering SDP and parameter tuning. In section 4, the proposed HS based optimization method is described. Section 5 includes the details of the experimental setup. In section 6, the experimental results are explained. In section 7, the threats to validity are covered. In the last section, the conclusion is summarized.

2. Harmony Search

Harmony Search (HS) is a music-inspired meta-heuristic optimization algorithm. HS mimics the process of instrument players searching the best harmony with their experience and repeated practice while improvising. The algorithm is first suggested by Geem et al. [3]. Since then, it has acquired remarkable results in the field of combinatorial optimization. The fundamental of HS is like a jazz improvisation. Players try to make a harmony with each other. They tune the pitch of the instruments based on their experiences or randomly to find a better harmony. By this repeated practice, the players reach to the best harmony that can please the audiences.

Under this principle, HS finds the optimal solution of a given problem through the following steps.

1) Initializes a problem and algorithm parameters
2) Initializes a harmony memory
3) Improvises a new harmony
4) Updates the harmony memory
5) Checks a stopping criterion

Table 1 shows the parameters of HS. Harmony Memory Size (HMS) indicates the maximum size of the experiences of players, representing Harmony Memory (HM). Remaining parameters, Harmony Memory Considering Rate (HMCR), Pitch Adjusting Rate (PAR), and Fret Width (FW) are used.
Table 1. Parameters of a Harmony Search Algorithm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony Memory Size (HMS)</td>
<td>The number of solution vectors simultaneously handled</td>
</tr>
<tr>
<td>Harmony Memory Considering Rate (HMCR)</td>
<td>The rate (0 ≤ HMCR ≤ 1) where HS picks one value randomly from HM</td>
</tr>
<tr>
<td>Pitch Adjusting Rate (PAR)</td>
<td>The rate (0 ≤ PAR ≤ 1) where HS tweaks the value which was originally picked from memory</td>
</tr>
<tr>
<td>Maximum Improvisation (MI)</td>
<td>The number of iterations</td>
</tr>
<tr>
<td>Fret Width (FW)</td>
<td>The bandwidth of pitch adjustment</td>
</tr>
</tbody>
</table>

to generate a new harmony. HMCR is a probability of choosing a harmony from HM, and PAR is a probability to adjust the pitch of chosen harmony. FW represents the changing bandwidth of pitch adjustment. MI (Maximum Improvisation) indicates the maximum number of iterations.

Based on the initialized value of HMS, HS generates the candidate solutions and stores them in HM. The fitness of each candidate is calculated by an objective function. Then, a new harmony is created by 3 ways, according to the parameters, HMCR and PAR.

- Random Playing: The new candidate solution is randomly generated by the probability of (1 − HMCR).
- Memory Consideration: The solution is randomly selected from HM by the probability of HMCR and is preserved as it is by the probability of (1 − PAR).
- Pitch Adjusting: The solution is randomly selected from HM by the probability of HMCR and is adjusted by the probability of PAR.

After a new candidate solution is generated by one of three ways described above, HM is updated. If the new solution has a better objective function value than the value of the worst candidate solution in HM’s objective function, the new one replaces the old one. HS iterates the solution generating and HM updating process until it reaches the preset exit condition or the maximum iteration value.

3. Related Work

3.1 Software Defect Prediction

Software Defect Prediction (SDP) aims at the optimal allocation of software quality assurance resources via the correct identification of defective modules. Most SDP studies are based on machine learning algorithms [6–11]. Not only Within-Project Defect Prediction (WPDP) using local data to build a classifier but also Cross-Project Defect Prediction (CPDP) using cross-project data to construct a classifier have attracted many researchers.

Zimmermann et al. [12] presented that only 21 among 622 CPDP cases were successful. They asserted that the identification of the data and process characteristics was crucial for dealing with different distributions between the source project and the target project. They also suggested CPDP issues be investigated by more researchers.

Turhan et al. [13] proposed the relevancy filtering method based on the nearest neighbor for CPDP. They indicated that Within-Project (WP) data were more useful to build a classifier compared to Cross-Project (CP) data.

He et al. [14] employed an example selection to deal with CPDP problems. They used 16 distributional characteristics including mode, median, mean, range, and variance for experiments. They asserted that predictive performance was closely related to such distributional characteristics.

Ma et al. [15] studied an approach called Transfer Naïve Bayes (TNB) for CPDP. As a way of measuring the similarity between projects, the range was used. The similarity weights calculated were used for building their proposed model.

Ryu et al. [16] proposed a boosting method for CPDP considering different distributions and class imbalance together. Asymmetric misclassification costs and similarity weights from the distributional characteristics of a source dataset and a target dataset were derived and different resampling mechanisms depending on them were used. The range was used to compute the similarity weights.

Ryu et al. [17] presented an approach called a Hybrid Instance Selection using Nearest-Neighbor (HISNN) method for CPDP with consideration of class imbalance. It adopted a selective learning technique based on local knowledge. If local knowledge is strong enough, k-nearest neighbor insensitive to class imbalance was used to predict defects. Otherwise, naïve Bayes using global knowledge was used.

Ryu et al. [2] presented a cost-sensitive boosting method for CPDP that is called Transfer Cost-Sensitive Boosting (TCSBoost) considering class imbalance in CP settings. It applied cost-sensitive learning and transfer learning together to CP data. It extracted additional cost parameters for instances with different distributional characteristics.

Canfora et al. [18] presented a genetic algorithm-based multi-objective classification model called a multi-objective defect predictor (MODEP). Their approach aimed to maximize the number of defect-prone modules (effectiveness) whereas minimizing lines of code to be inspected (inspection cost). It allowed classifiers to provide a compromise between two objectives.
Ryu and Baik [19] proposed multi-objective naïve Bayes classification techniques with consideration of the class imbalance problem in CP settings. The multi-objective optimization functions were formulated based on class imbalance. The class probability and the feature weights were parameterized and then they are searched by Harmony Search. They showed that their approaches could be applied to various prediction requirements in CP settings.

According to previous CPDP studies, the identification of distributional properties between a source project and a target project played an important role in the success of CPDP. In addition, recent studies showed that the prediction performance of CPDP can be enhanced by class imbalance learning.

3.2 Parameter Optimization

Harman et al. [20] reviewed various optimization techniques in software engineering including Simulated Annealing, and Genetic Algorithm. The authors presented limitations of Search-Based Software Engineering (SBSE) and methods to overcome them. They asserted that the search space be reduced using domain knowledge whenever possible.

Merler et al. [21] proposed a method to tune the parameters of a cost-sensitive boosting algorithm. A bisection method was used to optimize the performance toward the sensitivity and specificity. The weights for negatives and positives are updated differently at each step. But it didn’t address different dataset distributions.

Wang and Yao [22] proposed a variant of AdaBoost.NC [23] using a Negative Correlation learning algorithm. During the training of a boosting algorithm, a parameter was automatically configured. The dynamic version showed better performance than the original AdaBoost.NC.

Manjarres et al. [24] reviewed application portfolio of the music-inspired Harmony Search algorithm used in various domains including computer science, electrical engineering and civil engineering. They pointed out, as a meta-heuristic algorithm, it was successfully applied to solve computationally expensive optimization problems.

In this study, Harmony Search was applied to optimize the parameters of cost-sensitive boosting for CPDP. Additionally, it is adjusted to decrement the search space using characteristics of dataset distributions and class imbalance.

4. Harmony Search Based Parameter Optimization

We propose a parameter optimization technique using Harmony Search for Transfer Cost-Sensitive Boosting (TCSBoost) approach. This approach aims to identify optimal parameters and efficiently decreasing the search space by employing domain knowledge drawn from distributional properties and class imbalance. Fig. 1 illustrates the overall defect prediction process using a Harmony Search algorithm.

After the preparation of defect data for training and testing, training data are resampled with SMOTE [25] and Tomek Links [26] to deal with class imbalance. Then, the similarity weight using the range method [16] is calculated and the parameters are tuned via Harmony Search. Next, the TCSBoost model is built and tested using target data. Finally, the performance of prediction is evaluated with four performance measures.
4.1 Preparing Defect Dataset

Source and target project data are arranged as a training set and a test set respectively. If an example has at least a bug, it is labelled as buggy. If it has no bug, it is labelled as clean.

4.2 Resampling with SMOTE and Tomek Link

SMOTE (Synthetic Minority Over-sampling Technique) [25] and Tomek links [26] are used in our approach to represent the defective instances better. SMOTE, a way of over-sampling the minority class, generates synthetic minority class instances instead of duplicating existing instances. Tomek links can be used to under-sample instances. They only identify instances close to the class boundary. When the majority class instances close to the class boundary are under-sampled, overlapping around the class boundary can be reduced. We performed SMOTE and then Tomek link-based under-sampling. This can increase the performance of the Probability of Detection (PD) although the Probability of a False alarm (PF) increases. PD and PF are explained in detail in the later phase.

4.3 Similarity Weight Computation

In this phase, the similarity weight is computed to identify the distributional characteristics between source data and target data. This method is used in several CPDP studies [2], [15], [16], [27].

Suppose \(a_j \) is the jth attribute of \(x_i \), given a sequence \(x_i = (a_1, a_2, \ldots, a_k) \). The maximum and minimum value of jth attribute in the test data are obtained as follows:

\[
\begin{align*}
\max_j &= \max\{a_{j_1}, a_{j_2}, \ldots, a_{j_k}\}, \\
\min_j &= \min\{a_{j_1}, a_{j_2}, \ldots, a_{j_k}\},
\end{align*}
\]

where \(m \) is the number of the test instances, \(k \) is the number of attributes, and \(j = 1, 2, \ldots, k \). The vector \(\Delta\text{Max} = \{\max_1, \max_2, \ldots, \max_k\} \) has the maximum value of the attribute on the test data and the vector \(\Delta\text{Min} = \{\min_1, \min_2, \ldots, \min_k\} \) has the minimum value of the attribute on the test data. Then, the similarity weight of each training instance is calculated by the following:

\[
S_{ij} = \frac{\sum_{j=1}^{k} h(a_{ij})}{k}, \quad (1)
\]

where \(a_{ij} \) is the jth attribute of instance \(x_i \) and

\[h(a_{ij}) = \begin{cases}
1 & \text{if} \ \min_j \leq a_{ij} \leq \max_j \\
0 & \text{otherwise}
\end{cases} \]

4.4 Transfer Cost-Sensitive Boosting Technique

The overall process of TCSBoost only excludes the step of Harmony Search Optimization in Fig. 1. TCSBoost addresses class imbalance between the defect class and the non-defect class as well as feature distributional differences between a source project and a target project. Algorithm 1 shows the TCSBoost algorithm.

![Algorithm 1. TCSBoost algorithm](image)

Source project data (S), a small amount of target project data (T), and the similarity weight (SW) are input parameters. Firstly, source data and target data are assembled together as a training set. Secondly, the iteration of the boosting algorithm is performed. The data weight vector (\(w_n \)) is used by the base classifier (\(h \)) identifying weighted instances during training.

AdaCost [28] only deals with the class imbalance. By adapting a cost adjustment function for CPDP, TCSBoost addresses not only the class imbalance but also the distributional characteristics. Classification costs are assigned differently according to the similarity between a training set and a test set.

The cost adjustment function, \(\beta(n) \), is depicted as \(\beta(n) = \beta(\text{sign}(t_n, h_n), c_n) \), where \(\text{sign}(t_n, h_n) \) is positive for correct classification (\(\beta \)) and negative for incorrect classification (\(-\beta \)).
The cost adjustment function of TCSBoost is as follows:

- The cost adjustment function for the instances with the same or similar distribution
 \[\beta(c) = -0.25 \cdot c + 0.25 \]
 \[\beta(c) = 0.25 \cdot c \]
- The cost adjustment function for the instances with the different distribution
 \[\beta(c) = -0.25 \cdot c + 0.25 \]
 \[\beta(c) = 0.25 \cdot c - 0.5 \]

The previous study proposing TCSBoost demonstrated how small amount of WP data (target project data) can be used together with CP data (source project data) in the boosting algorithm. In order for WP data to be used as training data, more time and efforts for testing and inspection are required to label them as buggy or clean. In this study, however, we build a boosting model using only CP data without including WP data. Thus, our approach can be utilized early without additional efforts.

4.5 Harmony Search-Based Optimization Technique

Because the cost adjustment function of TCSBoost mainly affects the defect prediction performance, we aim to optimize its parameters. The parameters to optimize are identified considering class imbalance and distributional characteristics. Because the cost factor of the minority class is set to 1.0 as Sun et al. did [29], it is not considered as a parameter to tune. The parameter variables identified to tune are from p1 to p8 as follows:

- The cost factor of the majority class: \(p_1 \)
- The cost adjustment function for the instances with the similar distribution
 \[\beta(c) = -1 \cdot p_2 \cdot c + p_3 \]
 \[\beta(c) = p_4 \cdot c \]
- The cost adjustment function for the instances with the different distribution
 \[\beta(c) = -1 \cdot p_5 \cdot c + p_6 \]
 \[\beta(c) = p_7 \cdot c - p_8 \]

Table 2 shows the effect of a cost adjustment function we adopted in our approach based on the weight update rule of TCSBoost. For the source data belonging to the similar distribution, the weight of instances predicted correctly is decreased and the weight of instances predicted incorrectly is increased. In the case of true prediction, we decrease the weight of True Positives more conservatively than those of True Negatives. In the case of false prediction, the weights of False Negatives are increased more than those of False Positives. For the source data belonging to the different distribution, we decrease the weight of instances classified correctly and decrease the weight of instances classified incorrectly. In the case of true prediction, the weights of True Positives are decreased more than those of True Negatives. In the case of false prediction, the weights of False Negatives are decreased more conservatively than those of False Positives.

Harman et al. [20] presented SBSE limitations and techniques to overcome them. They guided domain knowledge should be employed whenever possible. In particular, when the fitness function is too computationally expensive, the size of the search space can be efficiently reduced by utilizing domain knowledge. In this study, several parts that domain knowledge can be used are identified. The lower/upper bounds of the variable can be enforced with several constraints drawn from distributional characteristics. Such constraints can help to reduce the size of the search space of a HS algorithm. Rationale of constraints is based on the mechanisms addressing the different correct/incorrect classification costs between the majority class and the minority class, and different distributions between a source project and a target project.

Table 3 defines the search space where HS aims to find an optimal parameter configuration. The above parameters of TCSBoost.HS (i.e., from p1 to p8) have the range in \([0,1]\). To simplify a HS algorithm, they are replaced into integer values by multiplying 10 (i.e., from Hp1 to Hp8). All variables can have a value ranging from 1 to 10. Based on distributional characteristics, ranges satisfying all constraints

Table 2. Effect of Cost Adjustment Function

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Cost adjustment function</th>
<th>Class</th>
<th>Effect</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar</td>
<td>[\beta(c) = -0.25 \cdot c + 0.25]</td>
<td>Positive</td>
<td>Decrease weight</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>[\beta(c) = 0.25 \cdot c]</td>
<td>Negative</td>
<td>Decrease weight</td>
<td>Medium</td>
</tr>
<tr>
<td>Different</td>
<td>[\beta(c) = -0.25 \cdot c + 0.25]</td>
<td>Positive</td>
<td>Increase weight</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>[\beta(c) = 0.25 \cdot c - 0.5]</td>
<td>Negative</td>
<td>Increase weight</td>
<td>Medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Cost adjustment function</th>
<th>Class</th>
<th>Effect</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar</td>
<td>[\beta(c) = -1 \cdot p_2 \cdot c + p_3]</td>
<td>Positive</td>
<td>Decrease weight</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>[\beta(c) = p_4 \cdot c]</td>
<td>Negative</td>
<td>Decrease weight</td>
<td>Medium</td>
</tr>
<tr>
<td>Different</td>
<td>[\beta(c) = -1 \cdot p_5 \cdot c + p_6]</td>
<td>Positive</td>
<td>Decrease weight</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>[\beta(c) = p_7 \cdot c - p_8]</td>
<td>Negative</td>
<td>Decrease weight</td>
<td>Medium</td>
</tr>
</tbody>
</table>
from Hp1 to Hp8 can be obtained. We further reduce the range considering the constraints and the properties of the parameters. Compared to the other parameters, Hp5 and Hp7 need to have smaller values, so the range from 1 to 5 is chosen. The other values are selected with the middle range (from 3 to 7) because high value of each parameter can increase/decrease the weight significantly during iteration and may cause overfitting.

Algorithm 2 describes the Harmony Search algorithm. After the parameters of HS are defined, Harmony Memory (HM) is initialized before running the main loop. It has the following form in the case of the seven variables and HMS = n.

Algorithm 2. Harmony Search algorithm

```plaintext
Define HMS, HMCR, PAR, MI, FW, N
Define Lower/Upper bounds of each variable
Initialize Harmony Memory
For i = 1, 2, ..., N
  Memory consideration: Randomly choose a note stored in HM
  Pitch adjusting: randomly adjust the pitch slightly within +/- FW
  Else
    Random playing: randomly select any pitch within bounds
End
HM update: check whether the new harmony is better than the worst
Return the best harmony found
```

Originally, the entries of HM are randomly configured. In our experiments, as part of decreasing the search space, HM is initialized like the following:

```
Initial HM = 

1   5   5   5   3   5   3   5
2   5   5   5   3   5   3   5
3   5   5   5   3   5   3   5
4   5   5   5   3   5   3   5
5   5   5   5   3   5   3   5
6   5   5   5   3   5   3   5
7   5   5   5   3   5   3   5
8   5   5   5   3   5   3   5
9   5   5   5   3   5   3   5
10  5   5   5   3   5   3   5
```

The initialization of HM is crucial to reduce the size of the search space because initial parameter values act as a baseline of the performance. By considering different impacts of class imbalance of each dataset, the whole range of Hp1 is covered. The chosen values of the remaining parameters (from Hp2 to Hp8) are based on constraints derived from the distributional properties between a training set and a test set. They are the median values of the reduced range in Table 3.

Memory consideration means that the algorithm randomly selects a note stored in HM with the probability of 1-PAR. Pitch adjusting indicates that the algorithm randomly adjusts the pitch slightly within +/- FW. It should ensure that constraints and lower/upper bounds are satisfied. Random playing indicates that the algorithm randomly selects any pitch within lower/upper bounds. Constraints and lower/upper bounds are checked to be satisfied. In the Harmony Memory update step, the algorithm checks whether the new harmony drawn from the above methods is better than the worst. Finally, the algorithm returns the best harmony stored in HM.

As a fitness function, we compute the weighted geometric mean (WG-mean) value after running TCSBoost with the eight parameters. WG-mean is explained in the phase of performance report in detail. At this time, source project data are divided into training data and validation data.

To select validation data, we employed the technique used by Ryu et al. [16]. In this method, source instances similar to target data are intended to be evenly distributed into the training set and the validation set. The process of the validation data selection is shown in Fig. 2. (1) Input data are split in 50:50 randomly. (2) Each half set is sorted by the weight in descending order and data with the high weight are chosen as validation data. Two fifth of a half set are chosen for validation data. Thus, a fifth of the total input data are employed as a validation set. The remaining instances are chosen as a training set.

The entire source project data and the parameters identified after the optimization are used as input data for building a final TCSBoost model.

4.6 Classification Prediction

In this phase, using the previously built boosting model, each instance of target project data is classified as buggy or clean. The feature space of target data is identical to that of source data.
Variable	Constraints	Rationale of constraints	Range satisfying all constraints	Reduced range
Hp1 | 1≤Hp1≤10 | No constraints | 1–10 | 1–10
Hp2 | 1<Hp2<10 | 1≤Hp5<Hp2 & Hp2<10 ≤ Hp5 | 2–9 | 3–7
Hp3 | 1<Hp2<Hp3≤10 | To decrease the weights of similar instances correctly predicted, \(\beta(c) = -1 \cdot p2 \cdot c + p3 > 0 \). Thus, \(p3 > p2 \cdot c \). To satisfy all the range of \(c \), \(p3 > p2 \). | 3–10 | 3–7
Hp4 | 1<Hp4≤10 | Instances in different distribution are less valuable than those in similar distribution. Compared to similar instances, this constraint decreases more weight of different instances. For example, when \(c = 1 \), \(p3 = 1 \), \(p6 = 1 \), \(p2 = 0.5 \), and \(p5 = 0.1 \), \(\beta(c) = -1 \cdot p5 \cdot c + p6 = 0.9 \), and the weight = \(e^{-0.9 \cdot \alpha} \). \(\beta(c) = -1 \cdot p5 \cdot c + p6 = 0.9 \), and the weight = \(e^{-0.9 \cdot \alpha} \). To satisfy all the range of \(c \), \(p6 > p5 \). | 2–10 | 3–7
Hp5 | 1≤Hp5<Hp2<10 | To decrease the weight of different instances correctly predicted, \(\beta(c) = -1 \cdot p5 \cdot c + p6 > 0 \). Thus, \(p6 > p5 \cdot c \). To satisfy all the range of \(c \), \(p6 > p5 \). | 1–8 | 1–5
Hp6 | 1≤Hp6<Hp5≤10 | Instances in different distribution are less valuable than those in similar distribution. The decreasing weight of different instances is relatively higher than the increasing weight of similar instances. For example, when \(c = 1 \), \(p8 = 1 \), \(p4 = 0.5 \), and \(p7 = 0.1 \), \(\beta(c) = p4 \cdot c = 0.5 \), and the weight = \(e^{0.5 \cdot \alpha} \). \(\beta(c) = p7 \cdot c - p8 = 0.9 \), and the weight = \(e^{-0.9 \cdot \alpha} \). | 2–10 | 3–7
Hp7 | 1≤Hp7<Hp4≤10 | Instances in different distribution are less valuable than those in similar distribution. The decreasing weight of different instances is relatively higher than the increasing weight of similar instances. For example, when \(c = 1 \), \(p8 = 1 \), \(p4 = 0.5 \), and \(p7 = 0.1 \), \(\beta(c) = p4 \cdot c = 0.5 \), and the weight = \(e^{0.5 \cdot \alpha} \). \(\beta(c) = p7 \cdot c - p8 = 0.9 \), and the weight = \(e^{-0.9 \cdot \alpha} \). | 1–9 | 1–5
Hp8 | 1≤Hp7<Hp8≤10 | To decrease the weight of different instances that are incorrectly classified, \(\beta(c) = p7 \cdot c - p8 < 0 \). Thus, \(p8 > p7 \cdot c \). To satisfy all the range of \(c \), \(p8 > p7 \). | 2–10 | 3–7

4.7 Performance Report

Software defect datasets tend to have the class imbalance issue. The learner constructed on such datasets is mostly evaluated by the overall and individual performance together. The individual performance on the defect class is typically assessed by the Probability of Detection (PD) and the Probability of a False alarm (PF). Table 4 shows a confusion matrix. True Positive (TP) is the number of buggy instances predicted correctly as buggy. False Positive (FP) is the number of clean instances predicted as buggy. True Negative (TN) is the number of clean instances predicted correctly as clean. False Negative (FN) is the number of buggy instances predicted as clean. PD indicates the ratio of appropriate instances among all the retrieved instances. PD is defined as: \(PD = \frac{TP}{TP + FN} \). PF represents the proportion of clean instances predicted as buggy. PF is defined as: \(PD = \frac{FP}{FP + TN} \). The lower PF value is better in contrast to PD.

Geometric mean (G-mean) and Balance are useful for assessing the overall performance of predictors under the imbalanced context. Balance is a Euclidean distance from the ideal point (PD=1, PF=0) to real (PD, PF) point. Balance is defined as: \(Balance = 1 - \sqrt{(0-PF)^2 + (1-PD)^2} \). G-mean indicates the geometric mean of recall values from the non-defect class and the defect class. G-mean is described as: \(G\text{-mean} = \sqrt{PD(1-PF)} \). They aim to show how well a classifier can balance the performance between the clean class and the buggy class. In contrast to PF, three metrics including PD, Balance and G-mean are better when they are higher.

\[WG\text{-mean} = \left(PD^{W_{PD}} (1-PF)^{W_{1-PF}} \right)^{1/(W_{PD} + W_{1-PF})} \]

where \(W_{PD} \) and \(W_{1-PF} \) are the weight for PD and 1-PF respectively. For instance, suppose \(W_{PD} = 2 \) and \(W_{1-PF} = 1 \), \(WG\text{-mean} = \sqrt[3]{PD^2(1-PF)} \). PD has greater value than
1-PF in the context of class imbalance. In line with this, WG-mean allows us to give more weights to PD while tuning the parameters of TCSBoost.

5. Experimental Setup

We answer the two research questions by conducting the comparative experiments. In order to figure out the effectiveness of using WG-mean, the experiments are performed with different weights of PD and 1-PF, i.e. 1.0:1.0 and 1.2:1.0 respectively. Our approaches are compared with Naïve Bayes, Naive Bayes with a k-Nearest Neighbor filter [13] and TCSBoost under CP settings for RQ1. For RQ2, we investigate if the performance of our method is similar to that of Naïve Bayes under WP settings.

Jureczko datasets are used to compare our method with other classifiers, because they are popularly used in the SDP studies. Balance and G-mean are effective performance metrics under the imbalanced context, because they are computed with the values of both PD and PF. The overall performance (e.g., Balance and G-mean) and the defect detection rate (PD) have a trade-off relationship [22]. Therefore, it is crucial to obtain a classifier producing high accuracy for the minority class while the accuracy of the majority class is not severely lowered. We formulate the following hypotheses to answer RQ1 and RQ2.

- **H1:** The performance of TCSBoost.HS is not better than those of other CPDP methods.
- **H1A:** The performance of TCSBoost.HS is better than those of other CPDP methods.
- **H2:** The performance of TCSBoost.HS is not similar to that of within-project defect prediction.
- **H2A:** The performance of TCSBoost.HS is similar to that of within-project defect prediction.

5.1 Datasets for Experiments

The Jureczko datasets [4] contain the instances represented with 20 static code attributes and 1 class label indicating whether the instance is defective or non-defective. 15 datasets were chosen from PROMISE repository [5] as Ryu et al. [2] did. They contain 11 open-source projects, 3 academic projects and a proprietary project. In Table 5, the properties of each project are explained. Table 6 shows the list of features of the Jureczko datasets used in the experiments.

5.2 CPDP and WPDP Settings

A dataset was chosen to be target data (for testing). The remaining datasets were utilized as source data (for training). Each experiment of CPDP was conducted 30 times, iteratively. For WPDP settings, a stratified M x N (M=6, N=5) fold cross validation strategy is employed.

5.3 Classification Models

In the cases of TCSBoost and TCSBoost.HS, Naive Bayes is used as a base learner. We used the implementation of the WEKA machine learning toolkit [30]. All of training and test data were min-max normalized, indicating that the range of features is rescaled to scale the range in [0, 1].

To compare the predictive performance, we included other learning algorithms, i.e., Naive Bayes under CP settings (CP NB), Naive Bayes with a kNN filter (CP NB+NN) and Naive Bayes under WP settings (WP NB). Naive Bayes is selected because it generally produces high prediction performance in Software Defect Prediction studies [6]. A log-filter was applied to training and test data before running the three models.

5.4 Parameter Setup

In the boosting algorithm, an empirical user-defined parameter, Lambda (λ), is utilized for the penalty magnitude.

Table 5. Projects in the Jureczko Dataset

<table>
<thead>
<tr>
<th>Project</th>
<th># Instances</th>
<th># Buggy</th>
<th>% Buggy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ant</td>
<td>125</td>
<td>20</td>
<td>16</td>
<td>Open-source</td>
</tr>
<tr>
<td>arc</td>
<td>234</td>
<td>27</td>
<td>11.5</td>
<td>Academic</td>
</tr>
<tr>
<td>camel</td>
<td>339</td>
<td>13</td>
<td>3.8</td>
<td>Open-source</td>
</tr>
<tr>
<td>e-learning</td>
<td>64</td>
<td>5</td>
<td>7.8</td>
<td>Academic</td>
</tr>
<tr>
<td>e-pidit</td>
<td>272</td>
<td>90</td>
<td>33.1</td>
<td>Open-source</td>
</tr>
<tr>
<td>log4j</td>
<td>135</td>
<td>34</td>
<td>25.2</td>
<td>Open-source</td>
</tr>
<tr>
<td>lucene</td>
<td>105</td>
<td>91</td>
<td>46.7</td>
<td>Open-source</td>
</tr>
<tr>
<td>poi</td>
<td>237</td>
<td>141</td>
<td>59.5</td>
<td>Open-source</td>
</tr>
<tr>
<td>prop-6</td>
<td>660</td>
<td>66</td>
<td>10</td>
<td>Proprietary</td>
</tr>
<tr>
<td>redaktor</td>
<td>176</td>
<td>27</td>
<td>15.3</td>
<td>Academic</td>
</tr>
<tr>
<td>synapse</td>
<td>157</td>
<td>16</td>
<td>10.2</td>
<td>Open-source</td>
</tr>
<tr>
<td>systemd</td>
<td>65</td>
<td>9</td>
<td>13.8</td>
<td>Open-source</td>
</tr>
<tr>
<td>tomcat</td>
<td>858</td>
<td>77</td>
<td>9</td>
<td>Open-source</td>
</tr>
<tr>
<td>xalan</td>
<td>723</td>
<td>110</td>
<td>15.2</td>
<td>Open-source</td>
</tr>
<tr>
<td>xerces</td>
<td>162</td>
<td>77</td>
<td>47.5</td>
<td>Open-source</td>
</tr>
</tbody>
</table>

Table 6. Features of the Jureczko Datasets

| Features | weighted methods per class (WMC), depth of inheritance tree (DIT), number of children (NOC), coupling between object classes (CBO), response for a class (RFC), lack of cohesion in methods (LCOM), lack of cohesion in methods (LCOM3), number of public methods (NPM), data access metric (DAM), measure of aggregation (MOA), measure of functional abstraction (MFA), cohesion among methods of class (CAM), inheritance coupling (IC), coupling between methods (CBM), average method complexity (AMC), afferent couplings (Ca), efferent couplings (Ce), maximum McCabe's cyclomatic complexity (Max(CC)), average McCabe's cyclomatic complexity (Avg(CC)), lines of code (LOC) |
Table 7. Parameter Setting of Harmony Search

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony Memory Size (HMS)</td>
<td>10</td>
</tr>
<tr>
<td>Harmony Memory Considering Rate (HMCR)</td>
<td>0.8</td>
</tr>
<tr>
<td>Pitch Adjusting Rate (PAR)</td>
<td>0.4</td>
</tr>
<tr>
<td>Maximum Improvisation (MI)</td>
<td>10</td>
</tr>
<tr>
<td>Fret Width (FW)</td>
<td>10% of total value range</td>
</tr>
</tbody>
</table>

during each repetition. The value of λ is set to 0.5 to simplify the usage of all boosting algorithms. The maximum number of iterations (M) of TCSBoost and TCSBoost.HS algorithms is set to 30. In the TCSBoost algorithm, the cost factor of the minority class is fixed as 1.0. For the majority class, it is set to 0.5. Table 7 describes the parameter values of Harmony Search used for the experiments. Recommended parameter settings [31, 32] are as follows. HMS = 30~100, HMCR = 0.7~0.95, PAR = 0.1~0.5, and FW = 1~10%. In our approach, the value of HMS is set to 10 considering efficiency.

6. Experimental Results

Tables 8 and 9 show PD, PF, G-mean and Balance values of classifiers in CP and WP settings. The best performing cases are marked in boldface.

Table 8 describes the median PD and PF values of classifiers. In Fig. 3, a scatter plot is illustrated using median PF and PD values of six classifiers over fifteen datasets. The ideal value of PD and PF is 1 and 0 respectively. As such, the better classifier has many points located at the bottom right of the regions. While CP NB produces high PD (0.829), it produces the worst PF (0.561). Therefore, Fig. 3 shows most of the points are placed at the top right of the regions. CP NB+NN filters irrelevant source instances out through the nearest-neighbor filter. This results in reducing PF, but it is still high (0.525). TCSBoost, two TCSBoost.HS models and WP NB show more balanced performance with regards to PD and PF. TCSBoost shows the best PF (0.201) and the worst PD (0.538). Two Harmony Search based approaches show higher PD than TCSBoost while showing worse PF rates. Particularly, when WPD is larger than 1, PD is considerably improved compared to TCSBoost. Two TCSBoost.HS models show worse PD and better PF than WP NB. The practically useful predictor...
should produce high performance for the defect class without worsening the performance of the non-defect class, indicating that acceptably low PF and high PD values are preferred.

In Table 9, the median Balance and G-mean values of each model on the datasets are shown. In general two TCSBoost.HS models outperform other classification models. CP NB and CP NB+NN produce Balance and G-mean values lower than 0.6 respectively. TCSBoost.HS using WPD=1 shows the best performance (G-mean:0.661, Balance:0.657).

The following research questions are analyzed in terms of the class imbalance.

- **RQ1:** Does Harmony Search technique effectively tune parameters of cost-sensitive boosting for CPDP?
- **RQ2:** Can the proposed method provide the predictive performance comparable to within-project defect prediction?

Previous researches [8, 33] suggested the way to assess the variability of the classifiers across multiple runs. The first, second (median) and third quartile of each CP or WP case are computed and sorted by their medians. Mini boxplot is utilized to display them. The first-third quartile range is represented by a bar while the median is marked as a circle. The minimum and maximum values are not displayed. The 30 points of each target project obtained by repetition are merged on the basis of each performance measure. The first, second and third quartile are calculated by using the 450 points of 15 target projects.

To compare the performance between two classifiers, two methods are applied. The Wilcoxon rank–sum test [34] is carried out at a 5% significance level as a statistical significance test. As a way to assess the magnitude of the improvement, A-statistics effect size test [35] recommended by [36] is conducted. According to the guidelines from [35], A-statistic of greater than 0.64 for PD, Balance and G-mean (or less than 0.36 for PF) means a medium effect size.

![Table 9. The Median G-mean & Balance Performance of Classification Models](image)

<table>
<thead>
<tr>
<th>Target Data</th>
<th>CP NB</th>
<th>CP NB+NN</th>
<th>TCSBoost</th>
<th>TCSBoost.HS (WPD=W1-PF=1:1)</th>
<th>TCSBoost.HS (WPD=W1-PF=1.2:1)</th>
<th>WP NB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>ant</td>
<td>0.577</td>
<td>0.528</td>
<td>0.618</td>
<td>0.618</td>
<td>0.75</td>
<td>0.747</td>
</tr>
<tr>
<td>arc</td>
<td>0.555</td>
<td>0.536</td>
<td>0.564</td>
<td>0.533</td>
<td>0.619</td>
<td>0.601</td>
</tr>
<tr>
<td>camel</td>
<td>0.531</td>
<td>0.547</td>
<td>0.513</td>
<td>0.51</td>
<td>0.669</td>
<td>0.656</td>
</tr>
<tr>
<td>e-learning</td>
<td>0.706</td>
<td>0.7</td>
<td>0.688</td>
<td>0.628</td>
<td>0.747</td>
<td>0.713</td>
</tr>
<tr>
<td>jedit</td>
<td>0.592</td>
<td>0.562</td>
<td>0.633</td>
<td>0.633</td>
<td>0.611</td>
<td>0.587</td>
</tr>
<tr>
<td>lucene</td>
<td>0.58</td>
<td>0.574</td>
<td>0.665</td>
<td>0.665</td>
<td>0.669</td>
<td>0.669</td>
</tr>
<tr>
<td>poi</td>
<td>0.595</td>
<td>0.577</td>
<td>0.585</td>
<td>0.592</td>
<td>0.669</td>
<td>0.669</td>
</tr>
<tr>
<td>prop-6</td>
<td>0.547</td>
<td>0.528</td>
<td>0.636</td>
<td>0.636</td>
<td>0.582</td>
<td>0.572</td>
</tr>
<tr>
<td>redaktor</td>
<td>0.491</td>
<td>0.463</td>
<td>0.375</td>
<td>0.392</td>
<td>0.666</td>
<td>0.654</td>
</tr>
<tr>
<td>tcsboost</td>
<td>0.589</td>
<td>0.578</td>
<td>0.645</td>
<td>0.636</td>
<td>0.636</td>
<td>0.602</td>
</tr>
<tr>
<td>tomcat</td>
<td>0.676</td>
<td>0.655</td>
<td>0.424</td>
<td>0.434</td>
<td>0.756</td>
<td>0.755</td>
</tr>
<tr>
<td>xalan</td>
<td>0.618</td>
<td>0.593</td>
<td>0.571</td>
<td>0.597</td>
<td>0.639</td>
<td>0.633</td>
</tr>
<tr>
<td>xerces</td>
<td>0.401</td>
<td>0.401</td>
<td>0.407</td>
<td>0.407</td>
<td>0.464</td>
<td>0.482</td>
</tr>
<tr>
<td>Median</td>
<td>0.58</td>
<td>0.562</td>
<td>0.571</td>
<td>0.593</td>
<td>0.639</td>
<td>0.633</td>
</tr>
</tbody>
</table>

Table 10. The Comparison of TCSBoost.HS (WPD=1) with Classification Models

<table>
<thead>
<tr>
<th>Target Data</th>
<th>CP NB</th>
<th>CP NB+NN</th>
<th>TCSBoost</th>
<th>TCSBoost.HS (WPD=W1-PF=1:1)</th>
<th>TCSBoost.HS (WPD=W1-PF=1.2:1)</th>
<th>WP NB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>PD</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.35</td>
<td>0.42</td>
<td>0.77</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.23</td>
<td>0.30</td>
<td>0.86</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-mean</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td>0.01</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.68</td>
<td>0.71</td>
<td>0.46</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td>0.12</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>A-statistic</td>
<td>0.70</td>
<td>0.72</td>
<td>0.48</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Table 11. The Comparison of TCSBoost.HS (WPD=1.2) with Classification Models](image)

<table>
<thead>
<tr>
<th>Target Data</th>
<th>CP NB</th>
<th>CP NB+NN</th>
<th>TCSBoost</th>
<th>TCSBoost.HS (WPD=W1-PF=1:1)</th>
<th>TCSBoost.HS (WPD=W1-PF=1.2:1)</th>
<th>WP NB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
<td>G</td>
<td>B</td>
</tr>
<tr>
<td>PD</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.40</td>
<td>0.47</td>
<td>0.80</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td><<0.001</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.27</td>
<td>0.34</td>
<td>0.89</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-mean</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td>0.01</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>A-statistics</td>
<td>0.66</td>
<td>0.68</td>
<td>0.45</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td>p-value</td>
<td><<0.001</td>
<td><<0.001</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>A-statistic</td>
<td>0.67</td>
<td>0.69</td>
<td>0.46</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 illustrates mini boxplots of median PD, PF, Balance and G-mean values of six classifiers over 15 projects sorted
Fig. 4. Mini Plot of Median PD, PF, G-mean and Balance Values of Six Classifiers Over 15 Datasets

by median. With regards to PD, WP NB shows the best performance. TCSBoost shows the lowest PD performance. TCSBoost.HS shows better PD performance as the weight of PD used in the fitness function increases. As of PF, TCSBoost shows the best performance. TCSBoost.HS models show better PF performance than WP NB. With regards to Balance and G-mean, TCSBoost and TCSBoost.HS models are similar to WP NB.

Tables 9-10 describe the comparison of TCSBoost.HS with other classifiers using the Wilcoxon rank–sum test and A-statistics effect size test. The boldface indicates TCSBoost.HS is better with p-value < 0.05 or A-statistics > 0.64 (A-statistics < 0.36 for PF).

Table 10 shows the comparison of TCSBoost.HS using $W_{PD} = 1$ and $W_{PF} = 1$ with other classifiers. In cases of CP NB and CP NB+NN, the Wilcoxon rank–sum test indicated that the difference in PF, Balance and G-mean was statistically significant having p-val << 0.001. The effect size for PF, Balance and G-mean is 0.10, 0.70 and 0.69 against CP NB and 0.14, 0.73 and 0.73 against CP NB+NN respectively, indicating a medium size effect. In terms of TCSBoost, the Wilcoxon rank–sum test indicated that the difference in Balance and G-mean was not statistically significant having p-val > 0.05. The difference in PD between TCSBoost.HS and TCSBoost was statistically significant having p-val < 0.05.

However, the effect size is 0.60 meaning a small effect. In terms of WP NB, the Wilcoxon rank–sum test indicated that the difference in Balance and G-mean was statistically significant having p-val < 0.05. But the effect size is small in each case (G-mean:0.65, Balance:0.61).

In Table 11, TCSBoost.HS using $W_{PD} = 1.2$ and $W_{PF} = 1.0$ is compared with other classifiers. In cases of CP NB and CP NB+NN, the result of the Wilcoxon rank–sum test and the effect size test are the same as the case of using $W_{PD} = 1$. In terms of TCSBoost, the Wilcoxon rank–sum test indicated that the difference in Balance and G-mean was not statistically significant having p-val > 0.05. The difference in PD between TCSBoost.HS and TCSBoost was statistically significant having p-val < 0.05. In addition, the effect size is 0.64 meaning a medium size effect. With regards to WP NB, the effect size is small in each case (G-mean:0.53, Balance:0.56). Classifiers producing low PD or high PF cannot be used from the practical point of view. The high overall performance (Balance and G-mean) computed with PD and PF is desirable.

For RQ1, the performances between TCSBoost.HS and other CPDP models are compared. Compared with CP NB and CP NB+NN, TCSBoost.HS is better with regards to PF, Balance and G-mean. In comparison to TCSBoost, TCSBoost.HS using $W_{PD}=1.0$ shows similar G-mean and Balance performance. With regards to PD, the effect size is small. When $W_{PD} = 1.2$, TCSBoost.HS shows similar Balance and G-mean values with TCSBoost. In terms of PD, TCSBoost.HS is better than TCSBoost. This points out that the higher weight of PD utilized in the fitness function of HS helps to increase the final result of PD for target data. TCSBoost.HS shows worse performance than TCSBoost with regard to PF. Nevertheless, it is practically better in that PD values outperform those of TCSBoost. Because TCSBoost.HS employing Harmony Search produces better results than TCSBoost does, the parameters tuned by HS are effective for cost-sensitive boosting for CPDP. Thus, H10 is rejected.

For RQ2, the performances between TCSBoost.HS and WPDP is compared. With regards to G-mean and Balance, the effect size of two TCSBoost.HS models is small. Even though PD performance of TCSBoost.HS is worse than that of WPDP, PF performance of TCSBoost.HS is better than
that of WPDP. Thus, H20 is rejected.

To sum up, the experimental results from the 15 CPDP cases show that Harmony Search can identify parameters adapted for datasets having different distributional characteristics and the class imbalance ratio. Consequently, TCSBoost.HS can be considered as a more stable and effective CPDP approach in the light of higher PD, G-mean and Balance as well as low PF rates.

7. Threats to Validity

7.1 Construct Validity

In order to decrement the search space of a HS algorithm, domain knowledge with regards to class imbalance and distributional characteristics are used in several parts. Such treatments may hinder the algorithm from finding the global optimum.

7.2 Internal Validity

The fitness value of the HS algorithm is G-mean calculated over the validation data that are extracted via the random stratified sampling. A fifth of training data is used as the validation data. The fitness function is the key ingredient of the SBSE technique to identify the optimal solution. There may exist a sampling bias of the validation data.

7.3 External Validity

The findings in this study are mostly based on the open source software project. Thus, if other closed software projects having dissimilar development environments, different conclusions may be reached.

7.4 Statistical Conclusion Validity

To evaluate the experimental results, Wilcoxon rank–sum test at a 5% significance level and the nonparametric A–statistic effect size test are conducted. Such tests are generally recommended for the performance comparison between two learners.

8. Conclusion

Software defect prediction models mostly using machine learning techniques are affected significantly by their parameters. To find optimal parameters, Search Based Software Engineering (SBSE) techniques can be employed. Harmony Search is one of the successfully used optimization techniques in various domains including computer science, electrical engineering, and civil engineering.

In this study, we present a novel technique based on HS to optimize parameters of a CPDP model that is useful for a company without sufficient local data. Our HS–based technique aims to tune a parameter related to class imbalance and parameters related to distributional characteristics playing a crucial role in CPDP. As Harman et al. [20] suggested, domain knowledge to decrement the search space is actively applied. To apply domain knowledge, the lower/upper bounds of each variable and constraints between parameters are defined. Then, they are applied in the steps of the Harmony Memory initialization, pitch adjusting and random playing.

Through the statistical test and the effect size test, we show the presented optimization technique can produce the meaningful results. By applying the proposed parameter selection, the defect prediction performance can be enhanced.

As a future work, we would refine our approach so that it can be more efficient. In this study, to reduce the size of the search space, domain knowledge is utilized. Besides of further investigating more relevant knowledge, we will study how to mitigate the computational cost of the fitness function.

References

Duksan Ryu
http://orcid.org/0000-0002-5956-0673
email : dsryu@kaist.ac.kr
He received his Ph.D. degree in School of Computing from KAIST in 2016. He earned a bachelor’s degree in computer science from Hanyang University and a Master’s dual degree in software engineering from KAIST and Carnegie Mellon University. His research areas are software defect prediction and software reliability engineering.

Jongmoon Baik
http://orcid.org/0000-0002-2546-7665
email : jhaik@kaist.ac.kr
He received his M.S. degree and Ph.D. degree in computer science from University of Southern California in 1996 and 2000 respectively. He received his B.S. degree in computer science and statistics from Chosun University in 1993. He worked as a principal research scientist at Software and Systems Engineering Research Laboratory, Motorola Labs, where he was responsible for leading many software quality improvement initiatives. Currently, he is an associate professor in School of Computing at Korea Advanced Institute of Science and Technology (KAIST). His research activity and interest are focused on software six sigma, software reliability & safety, and software process improvement.