PRIMITIVE IDEALS AND PURE INFINITENESS OF ULTRAGRAPH C^*-ALGEBRAS

Hossein Larki

Abstract. Let \mathcal{G} be an ultragraph and let $C^*(\mathcal{G})$ be the associated C^*-algebra introduced by Tomforde. For any gauge invariant ideal $I_{(H,B)}$ of $C^*(\mathcal{G})$, we approach the quotient C^*-algebra $C^*(\mathcal{G})/I_{(H,B)}$ by the C^*-algebra of finite graphs and prove versions of gauge invariant and Cuntz-Krieger uniqueness theorems for it. We then describe primitive gauge invariant ideals and determine purely infinite ultragraph C^*-algebras (in the sense of Kirchberg-Rørdam) via Fell bundles.

1. Introduction

In order to bring graph C^*-algebras [7] and Exel-Laca algebras [6] together under one theory, Tomforde introduced in [16] the notion of ultragraphs and associated C^*-algebras. An ultragraph is basically a directed graph in which the range of each edge is allowed to be a nonempty set of vertices rather than a single vertex. However, the class of ultragraph C^*-algebras are strictly larger than the graph C^*-algebras as well as the Exel-Laca algebras (see [17, Section 5]). Due to some similarities, some of fundamental results for graph C^*-algebras, such as the Cuntz-Krieger and the gauge invariant uniqueness theorems, simplicity, and K-theory computation have been extended to the setting of ultragraphs [16,17]. In particular, by constructing a specific topological quiver $Q(\mathcal{G})$ from an ultragraph \mathcal{G}, Katsura et al. described some properties of the ultragraph C^*-algebra $C^*(\mathcal{G})$ using those of topological quivers [10]. They showed that every gauge invariant ideal of $C^*(\mathcal{G})$ is of the form $I_{(H,B)}$ corresponding to an admissible pair (H,B) in \mathcal{G}.

Recall that for any gauge invariant ideal $I_{(H,B)}$ of a graph C^*-algebra $C^*(E)$, there is a (quotient) graph $E/(H,B)$ such that $C^*(E)/I_{(H,B)} \cong C^*(E/(H,B))$ (see [1, 2]). So, the class of graph C^*-algebras contains such quotients, and results and properties of graph C^*-algebras may be applied for their quotients. For examples, some contexts such as simplicity, K-theory, primitivity, and topological stable rank are directly related to the structure of ideals and quotients.
Unlike the C^*-algebras of graphs and topological quivers [13], there are no known ways in the literature for describing quotients of an ultragraph C^*-algebra by structure of the initial ultragraph. So, many graph C^*-algebra’s techniques could not be applied for the ultragraph setting, causing some obstacles in studying these C^*-algebras. The initial aim of this article is to analyze the structure of the quotient C^*-algebras $C^*(\mathcal{G})/I(\mathcal{H},\mathcal{B})$ for any gauge invariant ideal $I(\mathcal{H},\mathcal{B})$ of $C^*(\mathcal{G})$. For the sake of convenience, we first introduce the notion of quotient ultragraph $\mathcal{G}/(\mathcal{H},\mathcal{B})$ and a relative C^*-algebra $C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$ such that $C^*(\mathcal{G})/I(\mathcal{H},\mathcal{B}) \cong C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$ and then prove the gauge invariant and the Cuntz-Krieger uniqueness theorems for $C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$. The uniqueness theorems help us to show when a representation of $C^*(\mathcal{G})/I(\mathcal{H},\mathcal{B})$ is injective. We see that the structure of $C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$ is close to that of graph C^*-algebras and we can use them to determine primitive gauge invariant ideals. Moreover, in Section 6, we consider the notion of pure infiniteness for ultragraph C^*-algebras in the sense of Kirchberg-Rørdam [11] which is directly related to the structure of quotients. We should note that the initial idea for definition of quotient ultragraphs has been inspired from [9].

The present article is organized as follows. We begin in Section 2 by giving some definitions and preliminaries about the ultragraphs and their C^*-algebras which will be used in the next sections. In Section 3, for any admissible pair $(\mathcal{H},\mathcal{B})$ in an ultragraph \mathcal{G}, we introduce the quotient ultragraph $\mathcal{G}/(\mathcal{H},\mathcal{B})$ and an associated C^*-algebra $C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$. For this, the ultragraph \mathcal{G} is modified by an extended ultragraph $\overline{\mathcal{G}}$ and we define an equivalent relation \sim on $\overline{\mathcal{G}}$. Then $\mathcal{G}/(\mathcal{H},\mathcal{B})$ is the ultragraph \mathcal{G} with the equivalent classes $\{[A] : A \in \mathcal{G}^0\}$. In Section 4, by approaching with graph C^*-algebras, the gauge invariant and the Cuntz-Krieger uniqueness theorems will be proved for the quotient ultragraphs C^*-algebras. Moreover, we see that $C^*(\mathcal{G}/(\mathcal{H},\mathcal{B}))$ is isometrically isomorphic to the quotient C^*-algebra $C^*(\mathcal{G})/I(\mathcal{H},\mathcal{B})$.

In Sections 5 and 6, using quotient ultragraphs, some graph C^*-algebra’s techniques will be applied for the ultragraph C^*-algebras. In Section 5, we describe primitive gauge invariant ideals of $C^*(\mathcal{G})$, whereas in Section 6, we characterize purely infinite ultragraph C^*-algebras (in the sense of [11]) via Fell bundles [5,12].

2. Preliminaries

In this section, we review basic definitions and properties of ultragraph C^*-algebras which will be needed through the paper. For more details, we refer the reader to [10] and [16].

Definition 2.1 ([16]). An ultragraph is a quadruple $\mathcal{G} = (\mathcal{G}^0, \mathcal{G}^1, r_{\mathcal{G}}, s_{\mathcal{G}})$ consisting of a countable vertex set \mathcal{G}^0, a countable edge set \mathcal{G}^1, the source map $s_{\mathcal{G}} : \mathcal{G}^1 \to \mathcal{G}^0$, and the range map $r_{\mathcal{G}} : \mathcal{G}^1 \to P(\mathcal{G}^0) \setminus \{\emptyset\}$, where $P(\mathcal{G}^0)$ is the collection of all subsets of \mathcal{G}^0. If $r_{\mathcal{G}}(e)$ is a singleton vertex for each edge $e \in \mathcal{G}^1$, then \mathcal{G} is an ordinary (directed) graph.
For our convenience, we use the notation G^0 in the sense of [10] rather than [16, 17]. For any set X, a nonempty subcollection of the power set $\mathcal{P}(X)$ is said to be an algebra if it is closed under the set operations \cap, \cup, and \setminus. If G is an ultragraph, the smallest algebra in $\mathcal{P}(G^0)$ containing $\{\{v\} : v \in G^0\}$ and $\{r_G(e) : e \in G^1\}$ is denoted by G^0. We simply denote every singleton set $\{v\}$ by v. So, G^0 may be considered as a subset of G^0.

Definition 2.2. For each $n \geq 1$, a path α of length $|\alpha| = n$ in G is a sequence $\alpha = e_1 \ldots e_n$ of edges such that $s(e_{i+1}) \in r(e_i)$ for $1 \leq i \leq n - 1$. If also $s(e_1) \in r(e_n)$, α is called a loop or a closed path. We write α^0 for the set $\{s_G(e_i) : 1 \leq i \leq n\}$. The elements of G^0 are considered as the paths of length zero. The set of all paths in G is denoted by G^*. We may naturally extend the maps s_G, r_G on G^* by defining $s_G(A) = r_G(A) = A$ for $A \in G^0$, and $r_G(\alpha) = r_G(e_n), s_G(\alpha) = s_G(e_1)$ for each path $\alpha = e_1 \cdots e_n$.

Definition 2.3 ([16]). Let G be an ultragraph. A Cuntz-Krieger G-family is a set of partial isometries $\{s_e : e \in G^1\}$ with mutually orthogonal ranges and a set of projections $\{p_A : A \in G^0\}$ satisfying the following relations:

(UA1) $p_0 = 0$, $p_A p_B = p_{A \cap B}$, and $p_{A \cup B} = p_A + p_B - p_{A \cap B}$ for all $A, B \in G^0$,

(UA2) $s_e^* s_e = p_{r_G(e)}$ for $e \in G^1$,

(UA3) $s_e s_e^* \leq p_{r_G(e)}$ for $e \in G^1$, and

(UA4) $p_v = \sum_{s_G(e) = v} s_e s_e^*$ whenever $0 < |s_G^{-1}(v)| < \infty$.

The C^*-algebra $C^*(G)$ of G is the (unique) C^*-algebra generated by a universal Cuntz-Krieger G-family.

By [16, Remark 2.13], we have

$$C^*(G) = \overline{\text{span}} \{ s_{e_1} p_{A_1} s_{e_2}^* : \alpha, \beta \in G^*, A \in G^0, \text{ and } r_G(\alpha) \cap r_G(\beta) \cap A \neq \emptyset \},$$

where $s_{e_1} := s_{e_1} \cdots s_{e_n}$ if $\alpha = e_1 \cdots e_n$, and $s_{e_1} := p_A$ if $A = A$.

Remark 2.4. As noted in [16, Section 3], every graph C^*-algebra is an ultragraph C^*-algebra. Recall that if $E = (E^0, E^1, r_E, s_E)$ is a directed graph, a collection $\{s_e, p_v : v \in E^0, e \in E^1\}$ containing mutually orthogonal projections p_v and partial isometries s_e is called a Cuntz-Krieger E-family if

(GA1) $s_e^* s_e = p_{r_E(e)}$ for all $e \in E^1$,

(GA2) $s_e s_e^* \leq p_{r_E(e)}$ for all $e \in E^1$, and

(GA3) $p_v = \sum_{s_E(e) = v} s_e s_e^*$ for every vertex $v \in E^0$ with $0 < |s_E^{-1}(v)| < \infty$.

We denote by $C^*(E)$ the universal C^*-algebra generated by a Cuntz-Krieger E-family.

By the universal property, $C^*(G)$ admits the gauge action of the unit circle \mathbb{T}. By an ideal, we mean a closed two-sided ideal. Using the properties of quiver C^*-algebras [10], the gauge invariant ideals of $C^*(G)$ were characterized in [10, Theorem 6.12] via a one-to-one correspondence with the admissible pairs of G as follows.
Definition 2.5. A subset \(H \subseteq G^0 \) is said to be hereditary if the following properties hold:

(H1) \(s_G(e) \in H \) implies \(r_G(e) \in H \) for all \(e \in G^1 \).
(H2) \(A \cup B \subset H \) for all \(A, B \subset H \).
(H3) If \(A \subset H, B \in G^0, \) and \(B \subset A, \) then \(B \subset H \).

Moreover, a subset \(H \subset G^0 \) is called saturated if for any \(v \in G^0 \) with \(0 < |s_G^{-1}(v)| < \infty \), then \(\{ r_G(e) : s_G(e) = v \} \subset H \) implies \(v \in H \). The saturated hereditary closure of a subset \(H \subset G^0 \) is the smallest hereditary and saturated subset \(\overline{H} \) of \(G^0 \) containing \(H \).

Let \(H \) be a saturated hereditary subset of \(G^0 \). The set of breaking vertices of \(H \) is denoted by

\[
B_H := \{ w \in G^0 : |s_G^{-1}(w)| = \infty \text{ but } 0 < |r_G(s_G^{-1}(w)) \cap (G^0 \setminus H)| < \infty \}.
\]

An admissible pair \((H, B)\) in \(G \) is a saturated hereditary set \(H \subset G^0 \) together with a subset \(B \subset B_H \). For any admissible pair \((H, B)\) in \(G \), we define the ideal \(I_{(H,B)} \) of \(C^*(G) \) generated by

\[
\{ p_A : A \in G^0 \} \cup \{ p_w^H : w \in B \},
\]

where \(p_w^H := p_w - \sum_{s_G(e)=w, r_G(e)\notin H} s_e s_e^* \). Note that the ideal \(I_{(H,B)} \) is gauge invariant and [10, Theorem 6.12] implies that every gauge invariant ideal \(I \) of \(C^*(G) \) is of the form \(I_{(H,B)} \) by setting

\[
H := \{ A : p_A \in I \} \text{ and } B := \{ w \in B_H : p_w^H \in I \}.
\]

3. Quotient ultragraphs and their \(C^* \)-algebras

In this section, for any admissible pair \((H, B)\) in an ultragraph \(G \), we introduce the quotient ultragraph \(G/(H, B) \) and its relative \(C^* \)-algebra \(C^*(G/(H, B)) \). We will show in Proposition 4.6 that \(C^*(G/(H, B)) \) is isomorphic to the quotient \(C^* \)-algebra \(C^*(\overline{G}/I_{(H,B)}) \).

Let us fix an ultragraph \(G = (G^0, G^1, r_G, s_G) \) and an admissible pair \((H, B)\) in \(G \). For defining our quotient ultragraph \(G/(H, B) \), we first modify \(G \) by an extended ultragraph \(\overline{G} \) such that their \(C^* \)-algebras coincide. For this, add the vertices \(\{ w' : w \in B_H \setminus B \} \) to \(G^0 \) and denote \(\overline{G} := A \cup \{ w' : w \in A \cap (B_H \setminus B) \} \) for each \(A \subset G^0 \). We now define the new ultragraph \(\overline{G} = (\overline{G}^0, \overline{G}^1, r_{\overline{G}}, s_{\overline{G}}) \) by

\[
\overline{G}^0 := G^0 \cup \{ w' : w \in B_H \setminus B \},
\]

\[
\overline{G}^1 := G^1,
\]

the source map

\[
s_{\overline{G}}(e) := \begin{cases} (s_G(e))' & \text{if } s_G(e) \in B_H \setminus B \text{ and } r_G(e) \in H, \\ s_G(e) & \text{otherwise,} \end{cases}
\]

and the rang map \(r_{\overline{G}}(e) := r_G(e) \) for every \(e \in G^1 \). In Proposition 3.3 below, we will see that the \(C^* \)-algebras of \(G \) and \(\overline{G} \) coincide.
Example 3.1. Suppose G is the ultragraph

\[
\begin{array}{c}
\node (u) at (0,0) [shape=diamond,draw] {u} ; \\
\node (v) at (2,2) [shape=diamond,draw] {v} ; \\
\node (w) at (2,-2) [shape=diamond,draw] {w} ; \\
\node (w') at (4,-2) [shape=diamond,draw] {w'} ; \\
\node (A) at (4,0) [shape=diamond,draw,fill=white] {A} ; \\
\node (H) at (6,0) [shape=diamond,draw,fill=white, dashed] {H} ; \\
\node (e) at (1,1) [shape=diamond,draw] {e} ; \\
\node (f) at (3,1) [shape=diamond,draw] {f} ; \\
\node (g) at (1,-1) [shape=diamond,draw] {g} ; \\
\node (∞) at (2,0) [shape=diamond,draw] {(∞)} ; \\
\end{array}
\]

where \((∞)\) indicates infinitely many edges. If H is the saturated hereditary subset of G^0 containing \(\{v\}\) and A, then we have $B_H = \{w\}$. For $B := \emptyset$, consider the admissible pair (H, \emptyset) in G. Then the ultragraph \mathcal{G} associated to (H, \emptyset) would be

\[
\begin{array}{c}
\node (u) at (0,0) [shape=diamond,draw] {u} ; \\
\node (v) at (2,2) [shape=diamond,draw] {v} ; \\
\node (w) at (2,-2) [shape=diamond,draw] {w} ; \\
\node (w') at (4,-2) [shape=diamond,draw] {w'} ; \\
\node (A) at (4,0) [shape=diamond,draw,fill=white] {A} ; \\
\node (H) at (6,0) [shape=diamond,draw,fill=white, dashed] {H} ; \\
\node (e) at (1,1) [shape=diamond,draw] {e} ; \\
\node (f) at (3,1) [shape=diamond,draw] {f} ; \\
\node (g) at (1,-1) [shape=diamond,draw] {g} ; \\
\node (∞) at (2,0) [shape=diamond,draw] {(∞)} ; \\
\end{array}
\]

Indeed, since $B_H \setminus B = \{w\}$, for constructing \mathcal{G} we first add a vertex w' to G. We then define $\tau_G(f) := A = A$, $\tau_G(e) := \{v, w\} = \{v, w, w'\}$, and $\tau_G(g) := \{u\} = \{u\}$. For the source map s_G, for example, since $s_G(f) \in B_H \setminus B$ and $r_G(f) \in H$, we may define $s_G(f) := w'$. Note that the range of each edge emitted by w' belongs to H.

As usual, we write \mathcal{G}^0 for the algebra generated by the elements of $\mathcal{G}^0 \cup \{\tau_G(e) : e \in \mathcal{G}^1\}$. Note that $A = A$ for every $A \in H$, and hence, H would be a saturated hereditary subset of \mathcal{G}^0 as well. Moreover, the set of breaking vertices of H in \mathcal{G} coincides with B (meaning $B^0_H = B$).

Remark 3.2. Suppose that $C^*(\mathcal{G})$ is generated by a Cuntz-Krieger \mathcal{G}-family $\{s_v, P_A : A \in \mathcal{G}^0, e \in \mathcal{G}^1\}$. If a family $M = \{S_v, P_v, P_A : v \in \mathcal{G}^0, A \in \mathcal{G}^0, e \in \mathcal{G}^1\}$ in a C^*-algebra X satisfies relations (UA1)-(UA4) in Definition 2.3, we may generate a Cuntz-Krieger \mathcal{G}-family $N = \{S_v, P_A : A \in \mathcal{G}^0, e \in \mathcal{G}^1\}$ in X. For this, since \mathcal{G}^0 is the algebra generated by $\{v, w', \tau_G(e) : v \in \mathcal{G}^0, w \in$
Let \(G \) be an ultragraph, and let \((H,B)\) be an admissible pair in \(G \). If \(G \) is the extended ultragraph as above, then \(C^*(G) \cong C^*(\mathcal{G}) \).

Proof. Suppose that \(C^*(G) = C^*(t_e, q_A) \) and \(C^*(\mathcal{G}) = C^*(s_e, p_C) \). If we define

\[
P_v := q_v \quad \text{for } v \in G^0 \setminus (B_H \setminus B),
\]
\[
P_w := \sum_{r \in \mathcal{G}(e) = w} t_e^* r \quad \text{for } w \in B_H \setminus B,
\]
\[
P_w' := q_w - \sum_{r \in \mathcal{G}(e) = w} t_e^* r \quad \text{for } w \in B_H \setminus B,
\]
\[
P_A := q_A \quad \text{for } A \in \mathcal{G}^0,
\]
\[
S_e := t_e \quad \text{for } e \in \mathcal{G}^1,
\]

then, by Remark 3.2, the family

\[
\{ P_v, P_w, P_w', P_A, S_e : v \in G^0 \setminus (B_H \setminus B), \ w \in B_H \setminus B, \ A \in \mathcal{G}^0, \ e \in \mathcal{G}^1 \}
\]

induces a Cuntz-Krieger \(\mathcal{G} \)-family in \(C^*(G) \). Since all vertex projections of this family are nonzero (which follows all set projections \(P_A \) are nonzero for \(\emptyset \neq A \in \mathcal{G}^0 \)), the gauge-invariant uniqueness theorem [16, Theorem 6.8] implies that the \(*\)-homomorphism \(\phi : C^*(\mathcal{G}) \to C^*(G) \) with \(\phi(p_e) = P_e \) and \(\phi(s_e) = S_e \) is injective. On the other hand, the family generates \(C^*(G) \), and hence, \(\phi \) is an isomorphism. \(\square \)

To define a quotient ultragraph \(\mathcal{G}/(H,B) \), we use the following equivalent relation on \(\mathcal{G} \).

Definition 3.4. Suppose that \((H,B)\) is an admissible pair in \(\mathcal{G} \), and that \(\mathcal{G} \) is the extended ultragraph as above. We define the relation \(\sim \) on \(\mathcal{G} \) by

\[
A \sim C \iff \exists V \in H \text{ such that } A \cup V = C \cup V.
\]

Note that \(A \sim C \) if and only if both sets \(A \setminus C \) and \(C \setminus A \) belong to \(H \).

The following lemma may be proved by a tedious, but straightforward computations.

Lemma 3.5. The relation \(\sim \) is an equivalent relation on \(\mathcal{G} \). Furthermore, the operations

\[
[A] \cup [C] := [A \cup C], \ [A] \cap [C] := [A \cap C], \text{ and } [A] \setminus [C] := [A \setminus C]
\]

for all \(A, C \in \mathcal{G} \).
are well-defined on the equivalent classes \{[A]: A \in \mathcal{G}^0\}.

Definition 3.6. Let \(\mathcal{G}\) be an ultragraph, let \((H, B)\) be an admissible pair in \(\mathcal{G}\), and consider the equivalent relation of Definition 3.4 on the extended ultragraph \(\mathcal{G} = (\mathcal{G}^0, \mathcal{G}^1, \mathcal{G}^2, \mathcal{T}_r, \mathcal{T}_s)\). The **quotient ultragraph of \(\mathcal{G}\) by \((H, B)\)** is the quintuple \(\mathcal{G}/(H, B) = (\Phi(\mathcal{G}^0), \Phi(\mathcal{G}^0), \Phi(\mathcal{G}^1), r, s)\), where

\[
\Phi(\mathcal{G}^0) := \{[v]: v \in \mathcal{G}^0 \setminus H\} \cup \{[w]: w \in B_H \setminus B\},
\]

\[
\Phi(\mathcal{G}^0) := \\{[A]: A \in \mathcal{G}^0\},
\]

\[
\Phi(\mathcal{G}^1) := \{e \in \mathcal{G}^1: \mathcal{T}_r(e) \notin H\},
\]

and \(r: \Phi(\mathcal{G}^1) \to \Phi(\mathcal{G}^0)\), \(s: \Phi(\mathcal{G}^1) \to \Phi(\mathcal{G}^0)\) are the range and source maps defined by

\[
r(e) := \mathcal{T}_r(e) \quad \text{and} \quad s(e) := \mathcal{T}_s(e).
\]

We refer to \(\Phi(\mathcal{G}^0)\) as the vertices of \(\mathcal{G}/(H, B)\).

Remark 3.7. Lemma 3.5 implies that \(\Phi(\mathcal{G}^0)\) is the smallest algebra containing

\[
\{[v], [w]: v \in \mathcal{G}^0 \setminus H, w \in B_H \setminus B\} \cup \{[\mathcal{T}_r(e)]: e \in \mathcal{G}^1\}.
\]

Notation.

1. For every vertex \(v \in \mathcal{G}^0 \setminus H\), we usually denote \([v]\) instead of \([v]\).
2. For \(A, C \in \mathcal{G}^0\), we write \([A] \subseteq [C]\) whenever \([A] \cap [C] = [A]\).
3. Through the paper, we will denote the range and the source maps of \(\mathcal{G}\) by \(r_{\mathcal{G}}, s_{\mathcal{G}}\), those of \(\mathcal{G}/(H, B)\) by \(r_{\mathcal{G}/(H, B)}, s_{\mathcal{G}/(H, B)}\), and those of \(\mathcal{G}/(H, B)\) by \(r, s\).

Now we introduce representations of quotient ultragraphs and their relative \(C^*-\)algebras.

Definition 3.8. Let \(\mathcal{G}/(H, B)\) be a quotient ultragraph. A **representation of \(\mathcal{G}/(H, B)\)** is a set of partial isometries \(\{T_e: e \in \Phi(\mathcal{G}^1)\}\) and a set of projections \(\{Q_{[A]}: [A] \in \Phi(\mathcal{G}^0)\}\) which satisfy the following relations:

(QA1) \(Q_{[\emptyset]} = 0\), and for \([A], [C] \in \Phi(\mathcal{G}^0)\), \(Q_{[A \cap C]} = Q_{[A]} Q_{[C]}\) and \(Q_{[A \cup C]} = Q_{[A]} + Q_{[C]} - Q_{[A \cap C]}\).

(QA2) \(T_e T_f = \delta_{e,f} Q_{r(e)}\) for \(e, f \in \Phi(\mathcal{G}^1)\).

(QA3) \(T_e^* T_e \leq Q_{s(e)}\) for \(e \in \Phi(\mathcal{G}^1)\).

(QA4) \(Q_{[v]} = \sum_{e(s(e) = [v])} T_e T_e^*\), whenever \(0 < |s^{-1}([v])| < \infty\).

We denote by \(C^*(\mathcal{G}/(H, B))\) the universal \(C^*-\)algebra generated by a representation \(\{t_e, q_{[A]}: [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)\}\) which exists by Theorem 3.10 below.

Note that if \(\alpha = e_1 \cdots e_n\) is a path in \(\mathcal{G}\) such that \(r_{\mathcal{G}}(\alpha) \notin H\), then the hereditary property of \(H\) yields \(\mathcal{T}_r(e_i) \notin H\), and so \(e_i \in \Phi(\mathcal{G}^1)\) for all \(1 \leq i \leq n\). In this case, we denote \(t_\alpha := t_{e_1} \cdots t_{e_n}\). Moreover, we define

\[
(\mathcal{G}/(H, B))^* := \{[A]: [A] \neq [0]\} \cup \left\{\alpha \in \mathcal{G}^*: r(\alpha) \neq [0]\right\}
\]
as the set of finite paths in $\mathcal{G}/(H,B)$ and we can extend the maps s, r on $(\mathcal{G}/(H,B))^*$ by setting

$$s([A]) := r([A]) := [A] \text{ and } s(\alpha) := s(e_1), \ r(\alpha) := r(e_n).$$

The proof of next lemma is similar to the arguments of [16, Lemmas 2.8 and 2.9].

Lemma 3.9. Let $\mathcal{G}/(H,B)$ be a quotient ultragraph and let $\{T_e, Q_{[A]}\}$ be a representation of $\mathcal{G}/(H,B)$. Then any nonzero word in $T_e, Q_{[A]}$, and T_e^* may be written as a finite linear combination of the forms $T_{\alpha}Q_{[A]}T_{\beta}$ for $\alpha, \beta \in (\mathcal{G}/(H,B))^*$ and $[A] \in \Phi(\mathcal{G}^0)$ with $[A] \cap r(\alpha) \cap r(\beta) \neq \{0\}$.

Theorem 3.10. Let $\mathcal{G}/(H,B)$ be a quotient ultragraph. Then there exists a (unique up to isomorphism) C^*-algebra $C^*(\mathcal{G}/(H,B))$ generated by a universal representation $\{t_e, q_{[A]}: [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)\}$ for $\mathcal{G}/(H,B)$. Furthermore, all the t_e's and $q_{[A]}$'s are nonzero for $[0] \neq [A] \in \Phi(\mathcal{G}^0)$ and $e \in \Phi(\mathcal{G}^1)$.

Proof. By a standard argument similar to the proof of [16, Theorem 2.11], we may construct such universal C^*-algebra $C^*(\mathcal{G}/(H,B))$. Note that the universality implies that $C^*(\mathcal{G}/(H,B))$ is unique up to isomorphism. To show the last statement, we generate an appropriate representation for $\mathcal{G}/(H,B)$ as follows. Suppose $C^*(\mathcal{G}) = C^*(s_e, p_A)$ and consider $I_{(H,B)}$ as an ideal of $C^*(\mathcal{G})$ by the isomorphism in Proposition 3.3. If we define

$$
\begin{cases}
Q_{[A]} := p_A + I_{(H,B)} & \text{for } [A] \in \Phi(\mathcal{G}^0), \\
T_e := s_e + I_{(H,B)} & \text{for } e \in \Phi(\mathcal{G}^1),
\end{cases}
$$

then the family $\{T_e, Q_{[A]} : [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)\}$ is a representation for $\mathcal{G}/(H,B)$ in the quotient $C^*\mathcal{G}/I_{(H,B)}$. Note that the definition of $Q_{[A]}$’s is well-defined. Indeed, if $A_1 \cup V = A_2 \cup V$ for some $V \in H$, then $p_{A_1} + q_{V \setminus A_1} = p_{A_2} + q_{V \setminus A_2}$ and hence $p_{A_1} + I_{(H,B)} = p_{A_2} + I_{(H,B)}$ by the facts $V \setminus A_1, V \setminus A_2 \in H$.

Moreover, all elements $Q_{[A]}$ and T_e are nonzero for $[0] \neq [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)$. In fact, if $Q_{[A]} = 0$, then $p_A \in I_{(H,B)}$ and we get $A \in H$ by [10, Theorem 6.12]. Also, since $T_e^2 T_e = Q_{r(e)} \neq 0$, all partial isometries T_e are nonzero.

Now suppose that $C^*(\mathcal{G}/(H,B))$ is generated by the family $\{t_e, q_{[A]} : [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)\}$. By the universality of $C^*(\mathcal{G}/(H,B))$, there is a \sim-homomorphism $\phi : C^*(\mathcal{G}/(H,B)) \to C^*(\mathcal{G})/I_{(H,B)}$ such that $\phi(t_e) = T_e$ and $\phi(q_{[A]}) = Q_{[A]}$, and thus, all elements of $\{t_e, q_{[A]} : [0] \neq [A] \in \Phi(\mathcal{G}^0), e \in \Phi(\mathcal{G}^1)\}$ are nonzero. \hfill \square

Note that, by a routine argument, one may obtain

$$C^*(\mathcal{G}/(H,B)) = \overline{\text{span}} \{t_{\alpha} q_{[A]} t_{\beta}^* : \alpha, \beta \in (\mathcal{G}/(H,B))^*, r(\alpha) \cap [A] \cap r(\beta) \neq \{0\}\}.$$
4. Uniqueness theorems

After defining the C^*-algebras of quotient ultragraphs, in this section, we prove the gauge invariant and the Cuntz-Krieger uniqueness theorems for them. To do this, we approach to a quotient ultragraph C^*-algebra by graph C^*-algebras and then apply the corresponding uniqueness theorems for graph C^*-algebras. This approach is a developed version of the dual graph method of [14, Section 2] and [16, Section 5] with more complications. In particular, we show that the C^*-algebra $C^*(\mathcal{G}/(H, B))$ is isomorphic to the quotient $C^*(\mathcal{G})/I_{(H, B)}$, and the uniqueness theorems may applied for such quotients.

We fix again an ultragraph \mathcal{G}, an admissible pair (H, B) in \mathcal{G}, and the quotient ultragraph $\mathcal{G}/(H, B) = (\Phi(G^0), \Phi(G^1), r, s)$.

Definition 4.1. We say that a vertex $[v] \in \Phi(G^0)$ is a sink if $s^{-1}([v]) = \emptyset$. If $[v]$ only emits finitely many edges of $\Phi(G^1)$, $[v]$ is called a regular vertex. Any non-regular vertex is called a singular vertex. The set of singular vertices in $\Phi(G^0)$ is denoted by

$$\Phi_{\text{sg}}(G^0) := \{ [v] \in \Phi(G^0) : |s^{-1}([v])| = 0 \text{ or } \infty \}.$$

Let F be a finite subset of $\Phi_{\text{sg}}(G^0) \cup \Phi(G^1)$. Write $F^0 := F \cap \Phi_{\text{sg}}(G^0)$ and $F^1 := F \cap \Phi(G^1) = \{ e_1, \ldots, e_n \}$. We want to construct a special graph G_F such that $C^*(G_F)$ is isomorphic to $C^*(I_e, q_{[v]} : [v] \in F^0, e \in F^1)$. For each $\omega = (\omega_1, \ldots, \omega_n) \in \{0,1\}^n \setminus \{0^n\}$, we write

$$r(\omega) := \bigcap_{\omega_i=1} r(e_i) \setminus \bigcup_{\omega_j=0} r(e_j) \quad \text{and} \quad R(\omega) := r(\omega) \setminus \bigcup_{[v] \in F^0} [v].$$

Note that $r(\omega) \cap r(\nu) = \emptyset$ for distinct $\omega, \nu \in \{0,1\} \setminus \{0^n\}$. If

$$\Gamma_0 := \{ \omega \in \{0,1\}^n \setminus \{0^n\} : \exists [v_1], \ldots, [v_m] \in \Phi(G^0) \text{ such that}$$

$$R(\omega) = \bigcup_{i=1}^m [v_i] \text{ and } \emptyset \neq s^{-1}([v_i]) \subseteq F^1 \text{ for } 1 \leq i \leq m \},$$

we consider the finite set

$$\Gamma := \{ \omega \in \{0,1\}^n \setminus \{0^n\} : R(\omega) \neq \emptyset \text{ and } \omega \notin \Gamma_0 \}.$$

Now we define the finite graph $G_F = (G_F^0, G_F^1, r_F, s_F)$ containing the vertices $G_F^0 := F^0 \cup F^1 \cup \Gamma$ and the edges

$$G_F^1 := \{ (e, f) \in F^1 \times F^1 : s(f) \subseteq r(e) \} \cup \{ (e, [v]) \in F^1 \times F^0 : [v] \subseteq r(e) \} \cup \{ (e, \omega) \in F^1 \times \Gamma : \omega_i = 1 \text{ when } e = e_i \}$$

with the source map $s_F(e, f) = s_F(e, [v]) = s_F(e, \omega) = e$, and the range map $r_F(e, f) = f$, $r_F(e, [v]) = [v]$, $r_F(e, \omega) = \omega$.

We can use these relations to get $\Phi(\mathcal{G})$ a vertex of $\Phi(\mathcal{G})$. Let $\Phi(\mathcal{G}) = \Phi(\mathcal{G})$. If $\Phi(\mathcal{G}) = \Phi(\mathcal{G})$, then the elements

$$Q_e := t_e t_e^*, \quad Q_{[v]} := q_{r_e}(1 - \sum_{e \in E} t_e t_e^*)$$

form a Cuntz-Krieger \mathcal{G}_F-family generating the C^*-subalgebra $C^*(t_e, q_{[v]} : [v] \in F^0, e \in F^1)$ of $C^*(\mathcal{G}(H, B))$. Moreover, all projections Q_e are nonzero.

Proof. We first note that all the projections Q_e, $Q_{[v]}$, and Q_{ω} are nonzero. Indeed, each $[v] \in F^0$ is a singular vertex in $\mathcal{G}(H, B)$, so $Q_{[v]}$ is nonzero. Also, by definition, for every $\omega \in \Gamma$ we have $\omega \not\in \Gamma_0$ and $R(\omega) \neq \emptyset$. Hence, for any $\omega \in \Gamma$, if there is an edge $f \in \Phi(\mathcal{G}) \setminus F^1$ with $s(f) \subseteq R(\omega)$, then $0 \neq t_f t_f^* \leq Q_{\omega}$. If there is a sink $[w]$ such that $[w] \subseteq R(\omega) \setminus \bigcup F^0$, then $0 \neq q_{[w]} \leq q_{R(\omega)}(1 - \sum_{e \in F^1} t_e t_e^*) = Q_{\omega}$. Thus Q_{ω} is nonzero in either case. In addition, the projections Q_e, $Q_{[v]}$, and Q_{ω} are mutually orthogonal because of the factor $1 - \sum_{e \in F^1} t_e t_e^*$ and the definition of $R(\omega)$.

Now we show the collection $\{T_e, Q_a : a \in G^0, x \in G^1\}$ is a Cuntz-Krieger \mathcal{G}_F-family by checking the relations (GA1)-(GA3) in Remark 2.4.

(GA1): Since $Q_{[v]}, Q_{\omega} \leq q_{r_e}(e, [v]), (e, \omega) \in G^1_F$, we have

$$T_{(e,f)}T_{(e,f)} = Q_{(e,f)}t_e t_e^* = t_f t_f^* q_{r_e}(e, f) t_f t_f^* = Q_f,$$

and

$$T_{(e,[v])}T_{(e,[v])} = Q_{[v]}t_e t_e^* Q_{[v]} = Q_{[v]} q_{r_e} Q_{[v]} = Q_{[v]},$$

and

$$T_{(e,[\omega])}T_{(e,[\omega])} = Q_{\omega} t_e t_e^* Q_{\omega} = Q_{\omega} q_{r_e} Q_{\omega} = Q_{\omega}.$$

(GA2): This relation may be checked similarly.

(GA3): Note that any element of $F^0 \cup \Gamma$ is a sink in \mathcal{G}_F. So, fix some $e_i \in F^1$ as a vertex of G^1_F. Write $q_{F^0} := \sum_{[v] \in F^0} q_{[v]}$. We compute

(i) $q_{r_{(e_i)}} \sum_{f \in F^1} q_{(e_i)} \sum_{s(f) \subseteq r_{(e_i)}} t_f t_f^* = q_{r_{(e_i)}} \sum_{f \in F^1} t_f t_f^*;

(ii) q_{r_{(e_i)}} \sum_{[v] \in F^0, [v] \subseteq r_{(e_i)}} Q_{[v]} = q_{r_{(e_i)}} \sum_{[v] \in F^0} q_{[v]}(1 - \sum_{e \in F^1} t_e t_e^*)

= q_{r_{(e_i)}} q_{F^0}(1 - \sum_{e \in F^1} t_e t_e^*);

(iii) $q_{\omega} = \sum_{\omega \in \Gamma, \omega_i = 1} q_{R(\omega)}(1 - \sum_{e \in F^1} t_e t_e^*) = \sum_{\omega_i = 1} q_{R(\omega)}(1 - \sum_{e \in F^1} t_e t_e^*),$

because $\sum_{\omega_i = 1} q_{R(\omega)} = q_{r_{(e_i)}}(1 - q_{F^0})$.

We can use these relations to get

$$T_{(e,f)} + \sum_{s(f) \subseteq r_{(e_i)}} T_{(e,[v])} + \sum_{\omega \in \Gamma, \omega_i = 1} T_{(e,[\omega])}.$$
Corollary 4.3. If F is a finite subset of G_F (i.e., $|\{x \in G_F^1 : s_F(x) = e_i\}| > 0$), we conclude that
\[
\sum_{f \in F^1, s [f] \subseteq r (e_i)} T_{(e_i,f)} T^*_{(e_i,f)} + \sum_{[v] \in F^0, [v] \subseteq r (e_i)} T_{(e_i,[v])} T^*_{(e_i,[v])}
\]

for every $e_i \in F^1$. Also, for each $[v] \in F^0$, we have
\[
Q_{[v]} + \sum_{e \in F^1, s (e) = [v]} Q_e = t_{[v]} (1 - \sum_{e \in F^1} t_e t^*_e) + \sum_{e \in F^1, s (e) = [v]} t_e t^*_e
\]

which establishes the relation (GA3).

Furthermore, equation (4.1) in above says that $t_{e_i} \in C^*(T_s, Q_s)$ for every $e_i \in F^1$. Also, for each $[v] \in F^0$, we have
\[
Q_{[v]} + \sum_{e \in F^1, s (e) = [v]} Q_e = t_{[v]} (1 - \sum_{e \in F^1} t_e t^*_e) + \sum_{e \in F^1, s (e) = [v]} t_e t^*_e
\]

Therefore, the family $\{T_x, Q_a : a \in G^0_F, x \in G^1_F\}$ generates the C^*-subalgebra $C^*(\{t_e, q_{[v]} : e \in F^1, [v] \in F^0\})$ of $C^*(\hat{G}/(H, B))$ and the proof is complete. □

Corollary 4.3. If F is a finite subset of $\Phi_{sg}(G^0) \cup \Phi(G^1)$, then $C^*(G_F)$ is isometrically isomorphic to the C^*-subalgebra of $C^*(\hat{G}/(H, B))$ generated by $\{t_e, q_{[v]} : [v] \in F^0, e \in F^1\}$. □

Proof. Suppose that X is the C^*-subalgebra generated by $\{t_e, q_{[v]} : [v] \in F^0, e \in F^1\}$ and let $\{T_x, Q_a : a \in G^0_F, x \in G^1_F\}$ be the Cuntz-Krieger G_F-family in Proposition 4.2. If $C^*(G_F) = C^*(s_x, p_a)$, then there exists a $*$-homomorphism $\phi : C^*(G_F) \to X$ with $\phi(p_a) = Q_a$ and $\phi(s_x) = T_x$ for every $a \in G^0_F, x \in G^1_F$. Since each Q_a is nonzero by Proposition 4.2, the gauge invariant uniqueness theorem implies that ϕ is injective. Moreover, the family $\{T_x, Q_a\}$ generates X, so ϕ is an isomorphism. □
Note that if $F_1 \subseteq F_2$ are two finite subsets of $\Phi_{sg}(G^0) \cup \Phi(G^1)$ and X_1, X_2 are the C^*-subalgebras of $C^*(G/(H, B))$ associated to G_{F_1} and G_{F_2}, respectively, we then have $X_1 \subseteq X_2$ by Proposition 4.2.

Remark 4.4. Using relations (QA1)-(QA4) in Definition 3.8, each $q_{[A]}$ for $[A] \in \Phi(G^0)$, can be produced by the elements of

$$\{ q_{[v]} : [v] \in \Phi_{sg}(G^0) \} \cup \{ t_e : e \in \Phi(G^1) \}$$

with finitely many operations. So, the $*$-subalgebra of $C^*(G/(H, B))$ generated by

$$\{ q_{[v]} : [v] \in \Phi_{sg}(G^0) \} \cup \{ t_e : e \in \Phi(G^1) \}$$

is dense in $C^*(G/(H, B))$.

As for graph C^*-algebras, we can apply the universal property to have a strongly continuous gauge action $\gamma : \mathbb{T} \to \text{Aut}(C^*(G/(H, B)))$ such that

$$\gamma_z(t_e) = z t_e \text{ and } \gamma_z(q_{[A]}) = q_{[A]}$$

for every $[A] \in \Phi(G^0)$, $e \in \Phi(G^1)$, and $z \in \mathbb{T}$. Now we are ready to prove the uniqueness theorems.

Theorem 4.5 (The Gauge Invariant Uniqueness Theorem). Let $G/(H, B)$ be a quotient ultragraph and let $\{ T_e, Q_{[A]} \}$ be a representation for $G/(H, B)$ such that $Q_{[A]} \neq 0$ for $[A] \neq [\emptyset]$. If $\pi_{T,Q} : C^*(G/(H, B)) \to C^*(T_e, Q_{[A]})$ is the $*$-homomorphism satisfying $\pi_{T,Q}(t_e) = T_e$, $\pi_{T,Q}(q_{[A]}) = Q_{[A]}$, and there is a strongly continuous action β of \mathbb{T} on $C^*(T_e, Q_{[A]})$ such that $\beta_z \circ \pi_{T,Q} = \pi_{T,Q} \circ \gamma_z$ for every $z \in \mathbb{T}$, then $\pi_{T,Q}$ is faithful.

Proof. Select an increasing sequence $\{ F_n \}$ of finite subsets of $\Phi_{sg}(G^0) \cup \Phi(G^1)$ such that $\bigcup_{n=1}^{\infty} F_n = \Phi_{sg}(G^0) \cup \Phi(G^1)$. For each n, Corollary 4.3 gives an isomorphism

$$\pi_n : C^*(G_{F_n}) \to C^*(\{ t_e, q_{[v]} : [v] \in F^0, e \in F^1 \})$$

that respects the generators. We can apply the gauge invariant uniqueness theorem for graph C^*-algebras to see that the homomorphism

$$\pi_{T,Q} \circ \pi_n : C^*(G_{F_n}) \to C^*(T_e, Q_{[A]})$$

is faithful. Hence, for every F_n, the restriction of $\pi_{T,Q}$ on the $*$-subalgebra of $C^*(G/(H, B))$ generated by $\{ t_e, q_{[v]} : [v] \in F^0_n, e \in F^1_n \}$ is faithful. This turns out that $\pi_{T,Q}$ is injective on the $*$-subalgebra $C^*(t_e, q_{[v]} : [v] \in \Phi_{sg}(G^0), e \in \Phi(G^1))$. Since, this subalgebra is dense in $C^*(G/(H, B))$, we conclude that $\pi_{T,Q}$ is faithful. □

Proposition 4.6. Let G be an ultragraph. If (H, B) is an admissible pair in G, then $C^*(G/(H, B)) \cong C^*(G)/I_{(H, B)}$.
Proof. Using Proposition 3.3, we can consider $I_{H,B}$ as an ideal of $C^*(\mathcal{G})$. Suppose that $C^*(\mathcal{G}) = C^*(s_c,p_A)$ and $C^*(\mathcal{G}/(H,B)) = C^*(t_e,q_{[A]})$. If we define

$$T_e := s_c + I_{H,B} \text{ and } Q_{[A]} := p_A + I_{H,B}$$

for every $[A] \in \Phi(G^0)$ and $e \in \Phi(G^1)$, then the family $\{T_e, Q_{[A]}\}$ is a representation for $G/(H,B)$ in $C^*(\mathcal{G})/I_{H,B}$. So, there is a $*$-homomorphism $\phi : C^*(\mathcal{G}/(H,B)) \to C^*(\mathcal{G})/I_{H,B})$ such that $\phi(t_e) = T_e$ and $\phi(q_{[A]}) = Q_{[A]}$. Moreover, all $Q_{[A]}$ with $[A] \neq [\emptyset]$ are nonzero because $p_A + I_{H,B} = I_{H,B}$ implies $A \in H$. Then, an application of Theorem 4.5 yields that ϕ is faithful.

On the other hand, the family $\{T_e, Q_{[A]} : [A] \in \Phi(G^0), e \in \Phi(G^1)\}$ generates the quotient $C^*(\mathcal{G})/I_{H,B}$, and hence, ϕ is surjective as well. Therefore, ϕ is an isomorphism and the result follows. \qed

To prove a version of Cuntz-Krieger uniqueness theorem, we extend Condition (L) for quotient ultragraphs.

Definition 4.7. We say that $G/(H,B)$ satisfies Condition (L) if for every loop $\alpha = e_1 \cdots e_n$ in $G/(H,B)$, at least one of the following conditions holds:

(i) $r(e_i) \neq s(e_{i+1})$ for some $1 \leq i \leq n$, where $e_{i+1} := e_1$ (or equivalently, $r(e_i) \setminus s(e_{i+1}) \neq \emptyset$).

(ii) α has an exit; that means, there exists $f \in \Phi(G^1)$ such that $s(f) \subseteq r(e_i)$ and $f \neq e_{i+1}$ for some $1 \leq i \leq n$.

Lemma 4.8. Let F be a finite subset of $\Phi_{sg}(G^0) \cup \Phi(G^1)$. If $G/(H,B)$ satisfies Condition (L), then so does the graph G_F.

Proof. Suppose that $G/(H,B)$ satisfies Condition (L). As the elements of $F^0 \cup \Gamma$ are sinks in G_F, every loop in G_F is of the form $\tilde{\alpha} = (e_1, e_2) \cdots (e_n, e_1)$ corresponding with a loop $\alpha = e_1 \cdots e_n$ in $G/(H,B)$. So, fix a loop $\tilde{\alpha} = (e_1, e_2) \cdots (e_n, e_1)$ in G_F. Then $\alpha = e_1 \cdots e_n$ is a loop in $G/(H,B)$ and by Condition (L), one of the following holds:

(i) $r(e_i) \neq s(e_{i+1})$ for some $1 \leq i \leq n$, where $e_{i+1} := e_1$, or

(ii) there exists $f \in \Phi(G^1)$ such that $s(f) \subseteq r(e_i)$ and $f \neq e_{i+1}$ for some $1 \leq i \leq n$.

We can suppose in the case (i) that $s(e_{i+1}) \subseteq r(e_i)$ and $r(e_i)$ emits only the edge e_{i+1} in $G/(H,B)$. Then, by the definition of Γ, there exists either $[v] \in F^0$ with $[v] \subseteq r(e_i) \setminus s(e_{i+1})$, or $\omega \in \Gamma$ with $\omega_i = 1$. Thus, either $(e_i, [v])$ or (e_i, ω) is an exit for the loop $\tilde{\alpha}$ in G_F, respectively.

Now assume case (ii) holds. If $f \in F^1$, then (e_i, f) is an exit for $\tilde{\alpha}$. If $f \notin F^1$, for $[v] := s(f)$ we have either $[v] \notin F^0$ or

$$\exists \omega \in \Gamma \text{ with } \omega_i = 1 \text{ such that } [v] \subseteq R(\omega).$$

Hence, $(e_i, [v])$ or (e_i, ω) is an exit for $\tilde{\alpha}$, respectively. Consequently, in any case, $\tilde{\alpha}$ has an exit. \qed
Theorem 4.9 (The Cuntz-Krieger Uniqueness Theorem). Suppose that \(\mathcal{G}/(H,B) \) is a quotient ultragraph satisfying Condition (L). If \(\{ T_e, Q_A \} \) is a Cuntz-Krieger representation for \(\mathcal{G}/(H,B) \) in which all the projection \(Q_A \) are nonzero for \([A] \neq [0] \), then the *-homomorphism \(\pi_{T,Q} : C^*(\mathcal{G}/(H,B)) \rightarrow C^*(T_e, Q_{[A]}) \) with \(\pi_{T,Q}(t_e) = T_e \) and \(\pi_{T,Q}(q_{[A]}) = Q_{[A]} \) is an isometrically isomorphism.

Proof. It suffices to show that \(\pi_{T,Q} \) is faithful. Similar to Theorem 4.5, choose an increasing sequence \(\{ F_n \} \) of finite sets such that \(\bigcup_{n=1}^{\infty} F_n = \Phi_{sg}(G^0) \cup \Phi(G^1) \).

By Corollary 4.3, there are isomorphisms \(\pi_n : C^*(G_{F_n}) \rightarrow C^*(\{ t_e, q_{[v]} : [v] \in F_n, e \in F_n^1 \}) \) that respect the generators. Since all the graphs \(G_{F_n} \) satisfy Condition (L) by Lemma 4.8, the Cuntz-Krieger uniqueness theorem for graph \(C^* \)-algebras implies that the *-homomorphisms

\[
\pi_{T,Q} \circ \pi_n : C^*(G_{F_n}) \rightarrow C^*(T_e, Q_{[A]})
\]

are faithful. Therefore, \(\pi_{T,Q} \) is faithful on the subalgebra \(C^*(t_e, q_{[v]} : [v] \in \Phi_{sg}(G^0), e \in \Phi(G^1)) \) of \(C^*(\mathcal{G}/(H,B)) \). Since this subalgebra is dense in \(C^*(\mathcal{G}/(H,B)) \), we conclude that \(\pi_{T,Q} \) is a faithful homomorphism. \(\square \)

5. Primitive ideals in \(C^*(\mathcal{G}) \)

In this section, we apply quotient ultragraphs to describe primitive gauge invariant ideals of an ultragraph \(C^* \)-algebra. Recall that since every ultragraph \(C^* \)-algebra \(C^*(\mathcal{G}) \) is separable (as assumed \(G^0 \) to be countable), a prime ideal of \(C^*(\mathcal{G}) \) is primitive and vice versa [3, Corollaire 1].

To prove Proposition 5.4 below, we need the following simple lemmas.

Lemma 5.1. Let \(\mathcal{G}/(H,B) = (\Phi(G^0), \Phi(G^0), \Phi(G^1), r, s) \) be a quotient ultragraph of \(\mathcal{G} \). If \(\mathcal{G}/(H,B) \) does not satisfy Condition (L), then \(C^*(\mathcal{G}/(H,B)) \) contains an ideal Morita-equivalent to \(C(T) \).

Proof. Suppose that \(\gamma = e_1 \cdots e_n \) is a loop in \(\mathcal{G}/(H,B) \) without exits and \(r(e_i) = s(e_{i+1}) \) for \(1 \leq i \leq n \). If \(C^*(\mathcal{G}/(H,B)) = C^*(t_e, q_{[A]}), \) for each \(i \) we have

\[
t_e^* t_e = q_{s(e_i)} = q_{s(e_{i+1})} = t_{e_{i+1}}^* t_{e_{i+1}}^*.
\]

Write \([v] := s(\gamma)\) and let \(L_{\gamma} \) be the ideal of \(C^*(\mathcal{G}/(H,B)) \) generated by \(q_{[v]} \).

Since \(\gamma \) has no exits in \(\mathcal{G}/(H,B) \) and we have

\[
q_{s(e_i)} = (t_{e_i} \cdots t_{e_{n-1}}) q_{[v]} (t_{e_n}^* \cdots t_{e_i}^*) \quad (1 \leq i \leq n),
\]

an easy argument shows that

\[
I_{\gamma} = \overline{\text{span}} \{ t^\alpha q_{[v]} t^\beta_{[\beta]} : \alpha, \beta \in (\mathcal{G}/(H,B))^*, [v] \subseteq r(\alpha) \cap r(\beta) \}.
\]

So, we get

\[
q_{[v]} I_{\gamma} q_{[v]} = \overline{\text{span}} \{ (t^\gamma)^n q_{[v]} (t^\gamma)^m : m, n \geq 0 \},
\]

where \((t^\gamma)^0 := q_{[v]} \). We show that \(q_{[v]} I_{\gamma} q_{[v]} \) is a full corner in \(I_{\gamma} \) which is isometrically isomorphic to \(C(T) \). For this, let \(E \) be the graph with one vertex
w and one loop \(f \). If we set \(Q_w := q_v \) and \(T_f := t_\gamma q_v \), then \(\{ T_f, Q_w \} \) is a Cuntz-Krieger \(E \)-family in \(q_v I_q, q_v \). Assume \(C^*(E) = C^*(s_f, p_w) \). Since \(Q_w \neq 0 \), the gauge-invariant uniqueness theorem for graph \(C^* \)-algebras implies that the \(* \)-homomorphism \(\phi: C^*(E) \to q_v I_q, q_v \) with \(p_w \mapsto Q_w \) and \(s_f \mapsto T_f \) is faithful. Moreover, the \(C^* \)-algebra \(q_v I_q, q_v \) is generated by \(\{ T_f, Q_w \} \), and hence \(\phi \) is an isomorphism. As we know \(C^*(E) \cong C(T) \), \(q_v I_q, q_v \) is isomorphic to \(C(T) \). Moreover, since \(q_v \) generates \(I_q \), the corner \(q_v I_q, q_v \) is full in \(I_q \).

Thus, \(I_q \) is Morita-equivalent to \(q_v I_q, q_v \cong C(T) \) and the proof is complete. \(\square \)

Lemma 5.2. If \(\mathcal{G}/(H, B) \) satisfies Condition (L), then any nonzero ideal in \(C^*(\mathcal{G}/(H, B)) \) contains projection \(q_{[A]} \) for some \([A] \neq [0] \).

Proof. Take an arbitrary ideal \(J \) in \(C^*(\mathcal{G}/(H, B)) \). If there are no \(q_{[A]} \in J \) with \([A] \neq [0] \), then Theorem 4.9 implies that the quotient homomorphism \(\phi: C^*(\mathcal{G}/(H, B)) \to C^*(\mathcal{G}/(H, B))/J \) is injective. Hence, we have \(J = \ker \phi = (0) \). \(\square \)

Definition 5.3. Let \(\mathcal{G} \) be an ultragraph. For two sets \(A, C \in \mathcal{G}^0 \), we write \(A \supseteq C \) if either \(A \supseteq C \), or there exists \(\alpha \in \mathcal{G}^* \) with \(\{\alpha\} \supseteq \{\gamma\} \) such that \(s(\alpha) \in A \) and \(C \subseteq r(\gamma) \). We simply write \(A \supseteq v, v \supseteq C \) if \(A \supseteq \{v\} \), \(\{v\} \supseteq \{w\} \), respectively. A subset \(M \subseteq \mathcal{G}^0 \) is said to be downward directed whenever for every \(A_1, A_2 \in M \), there exists \(\emptyset \neq C \subseteq M \) such that \(A_1, A_2 \supseteq C \).

Proposition 5.4. Let \(H \) be a saturated hereditary subset of \(\mathcal{G}^0 \). Then the ideal \(I_{(H, B_H)} \) in \(C^*(\mathcal{G}) \) is primitive if and only if the quotient ultragraph \(\mathcal{G}/(H, B_H) \) satisfies Condition (L) and the collection \(\mathcal{G}^0 \setminus H \) is downward directed.

Proof. Let \(I_{(H, B_H)} \) be a primitive ideal of \(C^*(\mathcal{G}) \). Since \(C^*(\mathcal{G})/I_{(H, B_H)} \cong C^*(\mathcal{G}/(H, B_H)) \), the zero ideal in \(C^*(\mathcal{G}/(H, B_H)) \) is primitive. If \(\mathcal{G}/(H, B_H) \) does not satisfy Condition (L), then \(C^*(\mathcal{G}/(H, B_H)) \) contains an ideal \(J \) Morita-equivalent to \(C(T) \) by Lemma 5.1. Select two ideals \(J_1, J_2 \) in \(C(T) \) with \(I_1 \cap I_2 = (0) \), and let \(J_1, J_2 \) be their corresponding ideals in \(J \). Then \(J_1 \) and \(J_2 \) are two nonzero ideals of \(C^*(\mathcal{G}/(H, B_H)) \) with \(J_1 \cap J_2 = (0) \), contradicting the primitness of \(C^*(\mathcal{G}/(H, B_H)) \). Therefore, \(\mathcal{G}/(H, B) \) satisfies Condition (L).

Now we show that \(M := \mathcal{G}^0 \setminus H \) is downward directed. For this, we take two arbitrary sets \(A_1, A_2 \in M \) and consider the ideals

\[
J_1 := C^*(\mathcal{G}/(H, B_H))q_{[A_1]}C^*(\mathcal{G}/(H, B_H))
\]

and

\[
J_2 := C^*(\mathcal{G}/(H, B_H))q_{[A_2]}C^*(\mathcal{G}/(H, B_H))
\]

in \(C^*(\mathcal{G}/(H, B_H)) \) generated by \(q_{[A_1]} \) and \(q_{[A_2]} \), respectively. Since \(A_1, A_2 \notin H \), the projections \(q_{[A_1]}, q_{[A_2]} \) are nonzero by Theorem 3.10, and so are the ideals \(J_1, J_2 \). The primitness of \(C^*(\mathcal{G}/(H, B_H)) \) implies that the ideal

\[
J_1J_2 = C^*(\mathcal{G}/(H, B_H))q_{[A_1]}C^*(\mathcal{G}/(H, B_H))q_{[A_2]}C^*(\mathcal{G}/(H, B_H))
\]
is nonzero, and hence \(q_{[A_1]} C^*(G/(H, B_H)) q_{[A_2]} \neq \{0\} \). As the set
\[
\text{span} \{ t_\alpha q_{[D]} t_\beta^* : \alpha, \beta \in (G/(H, B))^* \}, \quad r(\alpha) \cap [D] \cap r(\beta) \neq [0] \}
\]
is dense in \(C^*(G/(H, B_H)) \), there exist \(\alpha, \beta \in (G/(H, B_H))^* \) and \([D] \in \Phi(G^0) \) such that \(q_{[A_1]} (t_\alpha q_{[D]} t_\beta^*) q_{[A_2]} \neq 0 \). In this case, we must have \(s(\alpha) \subseteq [A_1] \) and \(s(\beta) \subseteq [A_2] \) and thus, \(A_1, A_2 \geq C \) for \(C := r_G(\alpha) \cap D \cap r_G(\beta) \). Therefore, \(G^0 \setminus H \) is downward directed.

For the converse, we assume that \(G/(H, B_H) \) satisfies Condition (L) and the collection \(M = G^0 \setminus H \) is downward directed. Fix two nonzero ideals \(J_1, J_2 \) of \(C^*(G/(H, B_H)) \). By Lemma 5.2, there are nonzero projections \(q_{[A_1]} \in J_1 \) and \(q_{[A_2]} \in J_2 \). Then \(A_1, A_2 \notin H \) and, since \(M \) is downward directed, there exists \(C \in M \) such that \(A_1, A_2 \geq C \). Hence, the ideal \(J_1 \cap J_2 \) contains the nonzero projection \(q_G \). Since \(J_1 \) and \(J_2 \) were arbitrary, this concludes that the \(C^* \)-algebra \(C^*(G/(H, B_H)) \) is primitive and \(I_{(H, B_H)} \) is a primitive ideal in \(C^*(G) \) by Proposition 4.6.

The following proposition describes another kind of primitive ideals in \(C^*(G) \).

Proposition 5.5. Let \((H, B) \) be an admissible pair in \(G \) and let \(B = B_H \setminus \{w\} \). Then the ideal \(I_{(H, B)} \) in \(C^*(G) \) is primitive if and only if \(A \geq w \) for all \(A \in G^0 \setminus H \).

Proof. Suppose that \(I_{(H, B)} \) is a primitive ideal and take an arbitrary \(A \in G^0 \setminus H \). If \(\overline{\mathbf{A}} := A \cup \{v' : v \in A \cap (B_H \setminus B)\} \), then \(q_{\overline{\mathbf{A}}} \) and \(q_{[w]} \) are two nonzero projections in \(C^*(G/(H, B)) \). If we consider ideals \(J_{\overline{\mathbf{A}}} := \langle q_{\overline{\mathbf{A}}} \rangle \) and \(J_{[w]} := \langle q_{[w]} \rangle \) in \(C^*(G/(H, B)) \), then the primitness of \(C^*(G/(H, B)) \) \(\cong C^*(G)/I_{(H, B)} \) implies that the ideal
\[
J_{\overline{\mathbf{A}}} J_{[w]} = C^*(G/(H, B)) q_{\overline{\mathbf{A}}} C^*(G/(H, B)) q_{[w]} C^*(G/(H, B))
\]
is nonzero, and hence \(q_{\overline{\mathbf{A}}} C^*(G/(H, B)) q_{[w]} \neq \{0\} \). So, there exist \(\alpha, \beta \in (G/(H, B))^* \) such that \(q_{\overline{\mathbf{A}}} t_\alpha t_\beta^* q_{[w]} \neq 0 \). Since \([w'] \) is a sink in \(G/(H, B) \), we must have \(q_{\overline{\mathbf{A}}} t_\alpha t_{[w']} \neq 0 \). If \(|\alpha| = 0 \), then \([w'] \subseteq [\overline{\mathbf{A}}] \), \(w' \in \overline{\mathbf{A}} \) and \(w \in A \).

If \(|\alpha| \geq 1 \), then \(s(\alpha) \subseteq [\overline{\mathbf{A}}] \) and \([w'] \subseteq r(\alpha) \), which follow \(s_G(\alpha) \in A \) and \(w \in r_G(\alpha) \). Therefore, we obtain \(A \geq w \) in either case.

Conversely, assume \(A \geq w \) for every \(A \in G^0 \setminus H \). Then the collection \(G^0 \setminus H \) is downward directed. Moreover, for every \([0] \neq [A] \in \Phi(G^0) \), there exists \(\alpha \in (G/(H, B))^* \) such that \(s(\alpha) \subseteq [A] \) and \([w'] \subseteq r(\alpha) \). As \([w] \) is a sink in \(G/(H, B) \), we see that the quotient ultragraph \(G/(H, B) \) satisfies Condition (L). Now similar to the proof of Proposition 5.4, we can show that \(I_{(H, B)} \) is a primitive ideal.

Recall that each loop in \(G/(H, B) \) comes from a loop in the initial ultragraph \(G \). So, to check Condition (L) for a quotient ultragraph \(G/(H, B) \), we can use the following.
Definition 5.6. Let H be a saturated hereditary subset of G^0. For simplicity, we say that a path $\alpha = e_1 \cdots e_n$ lies in $G \setminus H$ whenever $r_\mathcal{G}(\alpha) \in G^0 \setminus H$. We also say that α has an exit in $G \setminus H$ if either $r_\mathcal{G}(e_i) \setminus s_\mathcal{G}(e_{i+1}) \in G^0 \setminus H$ for some i, or there is an edge f with $r_\mathcal{G}(f) \in G^0 \setminus H$ such that $s(f) = s(e_i)$ and $f \neq e_i$, for some $1 \leq i \leq n$.

It is easy to verify that a quotient ultragraph $G/(H, B)$ satisfies Condition (L) if and only if every loop in $G \setminus H$ has an exit in $G \setminus H$. Hence we have:

Theorem 5.7 (See [1, Theorem 4.7]). Let G be an ultragraph. A gauge invariant ideal $I_{(H, B)}$ of $C^*(\mathcal{G})$ is primitive if and only if one of the following holds:

1. $B = B_H$, $G^0 \setminus H$ is downward directed, and every loop in $G \setminus H$ has an exit in $G \setminus H$.
2. $B = B_H \setminus \{w\}$ for some $w \in B_H$, and $A \supset w$ for all $A \in G^0 \setminus H$.

Proof. Let $I_{(H, B)}$ be a primitive ideal in $C^*(\mathcal{G})$. Then

$$C^*(G/(H, B)) \cong C^*(\mathcal{G})/I_{(H, B)}$$

is a primitive C^*-algebra. We claim that $|B_H \setminus B| \leq 1$. Indeed, if w_1, w_2 are two distinct vertices in $B_H \setminus B$, similar to the proof of Propositions 5.4 and 5.5, the primitivity of $C^*(G/(H, B))$ implies that the corner $q_{w_1}C^*(G/(H, B))q_{w_2}$ is nonzero. So, there exist $\alpha, \beta \in (G/(H, B))^\ast$ such that $q_{w_1}t_\alpha q_{w_2} \neq 0$. But we must have $|\alpha| = |\beta| = 0$ because $[w_1], [w_2]$ are two sinks in $G/(H, B)$. Hence, $q_{w_1}q_{w_2} \neq 0$ which is impossible because $q_{w_1}q_{w_2} = q_{w_1}q_{w_2} = q_{w_1}q_{w_2} = q_{\emptyset} = 0$. Thus, the claim holds. Now we may apply Propositions 5.4 and 5.5 to obtain the result. \hfill \Box

Following [10, Definition 7.1], we say that an ultragraph G satisfies Condition (K) if every vertex $v \in G^0$ either is the base of no loops, or there are at least two loops α, β in G based at v such that neither α nor β is a subpath of the other. In view of [10, Proposition 7.3], if G satisfies Condition (K), then all ideals of $C^*(G)$ are of the form $I_{(H, B)}$. So, in this case, Theorem 5.7 describes all primitive ideals of $C^*(G)$.

6. Purely infinite ultragraph C^*-algebras via Fell bundles

Mark Tomforde in [17] determined ultragraph C^*-algebras in which every hereditary subalgebra contains infinite projections. Here, we consider the notion of “pure infiniteness” in the sense of Kirchberg-Rørdam [11], and generalize [8, Theorem 2.3] to ultragraph setting. In view of Proposition 3.14 and Theorem 4.16 of [11], a (not necessarily simple) C^*-algebra A is purely infinite if and only if for every $a \in A^+ \setminus \{0\}$ and closed two-sided ideal $I \subseteq A$, $a + I$ in the quotient A/I is either zero or infinite (in this case, a is called properly infinite). Recall from [11, Definition 3.2] that an element $a \in A^+ \setminus \{0\}$ is called infinite if there is $b \in A^+ \setminus \{0\}$ such that $a \oplus b \subseteq a \oplus 0$ in the matrix algebra $M_2(A)$.

So, the notion of pure infiniteness is directly related to the structure of ideals and quotients. In this section, we use the quotient ultragraphs to characterize purely infinite ultragraph C^*-algebras. Briefly, we consider the natural Z- grading (or Fell bundle) for $C^*(\mathcal{G})$ and then apply the results of [12, Section 4] for pure infiniteness of Fell bundles.

6.1. Condition (K) for \mathcal{G}

To prove the main result of this section, Theorem 6.6, we need to show that an ultragraph \mathcal{G} satisfies Condition (K) if and only if every quotient ultragraph $\mathcal{G}/(H, B)$ satisfies Condition (L).

Notation. Let $\alpha = e_1 \cdots e_n$ be a path in an ultragraph \mathcal{G}. If $\beta = e_k e_{k+1} \cdots e_l$ is a subpath of α, we simply write $\beta \subseteq \alpha$; otherwise, we write $\beta \nsubseteq \alpha$.

First, we show in the absence of Condition (K) for \mathcal{G} that there is a quotient ultragraph $\mathcal{G}/(H, B)$ which does not satisfy Condition (L). For this, let \mathcal{G} contain a loop $\gamma = e_1 \cdots e_n$ such that there are no loops α with $s(\alpha) = s(\gamma)$, $\alpha \nsubseteq \gamma$, and $\gamma \nsubseteq \alpha$. If $\gamma^0 := \{s_\mathcal{G}(e_1), \ldots, s_\mathcal{G}(e_n)\}$, define

$$X := \{r_\mathcal{G}(\alpha) \setminus \gamma^0 : \alpha \in \mathcal{G}^*, |\alpha| \geq 1, s_\mathcal{G}(\alpha) \in \gamma^0\},$$

$$Y := \left\{ \bigcup_{i=1}^n A_i : A_1, \ldots, A_n \in X, n \in \mathbb{N} \right\},$$

and set

$$H_0 := \{B \in \mathcal{G}^0 : B \subseteq A \text{ for some } A \in Y \}.$$

We construct a saturated hereditary subset H of \mathcal{G}^0 as follows: for any $n \in \mathbb{N}$ inductively define

$$S_n := \{w \in \mathcal{G}^0 : 0 < |s_\mathcal{G}^{-1}(w)| < \infty \text{ and } r_\mathcal{G}(s_\mathcal{G}^{-1}(w)) \subseteq H_{n-1} \}$$

and

$$H_n := \{ A \cup F : A \in H_{n-1} \text{ and } F \subseteq S_n \text{ is a finite subset} \}.$$

Then we can see that the subset

$$H = \bigcup_{n=0}^{\infty} H_n = \left\{ A \cup F : A \in H_0 \text{ and } F \subseteq \bigcup_{n=1}^{\infty} S_n \text{ is a finite subset} \right\}$$

is hereditary and saturated.

Lemma 6.1. Suppose that $\gamma = e_1 \cdots e_n$ is a loop in \mathcal{G} such that there are no loops α with $s(\alpha) = s(\gamma)$ and $\alpha \nsubseteq \gamma$, $\gamma \nsubseteq \alpha$. If we construct the set H as above, then H is a saturated hereditary subset of \mathcal{G}^0. Moreover, we have $A \cap \gamma^0 = \emptyset$ for every $A \in H$.

Proof. By induction, we first show that each H_n is a hereditary set in \mathcal{G}. For this, we check conditions (H1)-(H3) in Definition 2.5. To verify condition (H1) for H_0, let us take $e \in \mathcal{G}^1$ with $s_\mathcal{G}(e) \in H_0$. Then $s_\mathcal{G}(e) \in X$ and there is $\alpha \in \mathcal{G}^*$ such that $s_\mathcal{G}(\alpha) \in \gamma^0$ and $s_\mathcal{G}(e) \in r_\mathcal{G}(\alpha) \setminus \gamma^0$. Hence, $s_\mathcal{G}(ae) = s_\mathcal{G}(\alpha) \in \gamma^0$. Moreover, we have $r_\mathcal{G}(ae) \cap \gamma^0 = \emptyset$ because the otherwise implies the existence
of a path $\beta \in G^*$ with $s_G(\beta) = s_G(\gamma)$ and $\beta \nsubseteq \gamma$, $\gamma \nsubseteq \beta$, contradicting the hypothesis. It turns out

$$r_G(e) = r_G(\alpha e) = r_G(\alpha e) \setminus \gamma^0 \in X \subseteq H_0.$$

Hence, H_0 satisfies condition (H1). We may easily verify conditions (H2) and (H3) for H_0, so H_0 is hereditary. Moreover, for every $w \in S_n$, the range of each edge emitted by w belongs to H_{n-1} by definition. Thus, we can inductively check that each H_n is hereditary, and so is $H = \cup_{n=1}^{\infty} H_n$. The saturation property of H may be verified similar to the proof of [17, Lemma 3.12].

It remains to show $A \cap \gamma^0 = \emptyset$ for every $A \in H$. To do this, note that $A \cap \gamma^0 = \emptyset$ for every $A \in H_0$ because this property holds for all $A \in X$. We claim that $(\cup_{n=1}^{\infty} S_n) \cap \gamma^0 = \emptyset$. Indeed, if $v = s_G(e_i) \in \gamma^0$ for some $e_i \in \gamma$, then $r_G(e_i) \cap \gamma^0 \neq \emptyset$ and $r_G(e_i) \notin H_0$. Hence, $\{r_G(e) : e \in G^1, s_G(e) = v\} \not\subseteq H_0$ that turns out $v \notin S_1$. So, we have $S_1 \cap \gamma^0 = \emptyset$. An inductive argument shows $S_n \cap \gamma^0 = \emptyset$ for $n \geq 1$, and the claim holds. Now since

$$H = \cup_{n=1}^{\infty} H_n = \{A \cup F : A \in H_0 \text{ and } F \subseteq \cup_{n=1}^{\infty} S_n \text{ is a finite subset}\},$$

we conclude that $A \cap \gamma^0 = \emptyset$ for all $A \in H$. \hfill \square

Proposition 6.2. An ultragraph G satisfies Condition (K) if and only if for every admissible pair (H, B) in G, the quotient ultragraph $G/(H, B)$ satisfies Condition (L).

Proof. Suppose that G satisfies Condition (K) and (H, B) is an admissible pair in G. Let $\alpha = e_1 \cdots e_n$ be a loop in $G/(H, B)$. Since α is also a loop in G, there is a loop $\beta = f_1 \cdots f_m$ in G with $s_G(\alpha) = s_G(\beta)$, and neither $\alpha \subseteq \beta$ nor $\beta \subseteq \alpha$. Without loss of generality, assume $e_1 \neq f_1$. By the fact $s_G(\alpha) = s_G(\beta) \in r_G(\beta)$, we have $r_G(\beta) \notin H$, and so $r_G(f_1) \notin H$ by the hereditary property of H. Therefore, f_1 is an exit for α in $G/(H, B)$ and we conclude that $G/(H, B)$ satisfies Condition (L).

For the converse, suppose on the contrary that G does not satisfy Condition (K). Then there exists a loop $\gamma = e_1 \cdots e_n$ in G such that there are no loops α with $s(\alpha) = s(\gamma)$, $\alpha \nsubseteq \gamma$, and $\gamma \nsubseteq \alpha$. As Lemma 6.1, construct a saturated hereditary subset H of G^0 and consider the quotient ultragraph $G/(H, B_H) = (\Phi(G^0), \Phi(G^0), \Phi(G^1), r, s)$. We show that γ as a loop in $G/(H, B_H)$ has no exits and $r(e_i) = s(e_{i+1})$ for $1 \leq i \leq n$. If f is an exit for γ in $G/(H, B_H)$ such that $s(f) = s(e_i)$ and $f \neq e_j$, then $r_G(f) \notin H$ and $r_G(f) \cap \gamma^0 \neq \emptyset$ (if $r_G(f) \cap \gamma^0 = \emptyset$, then $r_G(f) = r_G(f) \setminus \gamma^0 \in X \subseteq H$, a contradiction). So, there is $e_i \in \gamma$ such that $s_G(e_i) \in r_G(f)$. If we set $\alpha := e_1 \cdots e_{j-1} f e_j \cdots e_n$, then α is a loop in G with $s_G(\alpha) = s_G(\gamma)$, and $\alpha \nsubseteq \gamma$, $\gamma \nsubseteq \alpha$, that contradicts the hypothesis. Therefore, γ has no exits in $G/(H, B_H)$. Moreover, we have $r(e_i) \cap \gamma^0 = s(e_{i+1})$ for each $1 \leq i \leq n$, because the otherwise gives an exit for γ in $G/(H, B_H)$ by the construction of H. Hence,

$$r(e_i) \setminus s(e_{i+1}) = r(e_i) \setminus [\gamma^0] = \emptyset,$$
and we get \(r(e_i) = s(e_{i+1}) \) (note that the fact \(r_G(e_i) \setminus \gamma^0 \in H \) implies \(r(e_i) \setminus \gamma^0 = [r_G(e_i) \setminus \gamma^0] = [\emptyset] \)). Therefore, the quotient ultragraph \(G/(H, B_H) \) does not satisfy Condition \((L)\) as desired. \(\square\)

6.2. Purely infinite ultragraph \(C^* \)-algebras via Fell bundles

Every quotient ultragraph (or ultragraph) \(C^* \)-algebra
\[
C^*(G/(H, B)) = C^*(q_{[A]}, t_e)
\]
is equipped with a natural \(\mathbb{Z} \)-grading or Fell bundle \(B = \{ B_n : n \in \mathbb{Z} \} \) with the fibers
\[
B_n := \text{span} \{ t_{\mu q_{[A]}} t^*_{\nu} : \mu, \nu \in (G/(H, B))^*, |\mu| - |\nu| = n \}.
\]
These Fell bundles will be considered in this section. The fiber \(B_0 \) is the fixed point \(C^* \)-subalgebra of \(C^*(G/(H, B)) \) for the gauge action which is an AF \(C^* \)-algebra. An application of the gauge invariant uniqueness theorem implies that \(C^*(G/(H, B)) \) is isomorphic to the cross sectional \(C^* \)-algebra \(C^*_r(B) \) (we refer the reader to [5] for details about Fell bundles and their \(C^* \)-algebras). Moreover, since \(\mathbb{Z} \) is an amenable group, combining Theorem 20.7 and Proposition 20.2 of [5] implies that \(C^*(G/(H, B)) \) is also isomorphic to the reduced cross sectional \(C^* \)-algebra \(C^*_r(B) \).

Following [4, Definition 2.1], an \emph{ideal} in a Fell bundle \(B = \{ B_n \} \) is a family \(\mathcal{J} = \{ J_n \}_{n \in \mathbb{Z}} \) of closed subspaces \(J_n \subseteq B_n \), such that \(B_mB_n \subseteq J_{mn} \) and \(J_nB_m \subseteq J_{nm} \) for all \(m, n \in \mathbb{Z} \). If \(\mathcal{J} \) is an ideal of \(B \), then the family \(B/\mathcal{J} := \{ B_n/J_n \}_{n \in \mathbb{Z}} \) is equipped with a natural Fell bundle structure, which is called a \emph{quotient Fell bundle} of \(B \); cf. [5, Definition 21.14].

Definition 6.3 ([12, Definition 4.1]). Let \(G/(H, B) \) be a quotient ultragraph and \(B = \{ B_n \}_{n \in \mathbb{Z}} \) is the above Fell bundle in \(C^*(G/(H, B)) \). We say that \(B \) is \emph{aperiodic} if for each \(n \in \mathbb{Z} \setminus \{ 0 \} \), each \(b_n \in B_n \), and every hereditary subalgebra \(A \) of \(B_0 \), we have
\[
\inf \{ \|ab_n a\| : a \in A^+, \|a\| = 1 \} = 0.
\]
Furthermore, \(B \) is called \emph{residually aperiodic} whenever the quotient Fell bundle \(B/\mathcal{J} \) is aperiodic for every ideal \(\mathcal{J} \) of \(B \).

The following lemma is analogous to [12, Proposition 7.3] for quotient ultragraphs.

Lemma 6.4. Let \(G/(H, B) \) be a quotient ultragraph and let \(B = \{ B_n \}_{n \in \mathbb{Z}} \) be the Fell bundle associated to \(C^*(G/(H, B)) \). Then \(B \) is aperiodic if and only if \(G/(H, B) \) satisfies Condition \((L)\).

Proof. We may modify the proof of [12, Proposition 7.3] for our case by replacing elements \(s_\alpha s_{\beta}^* \) and \(s_\mu s_{\mu}^* \) with \(t_{\alpha q_{[A]}} t^*_{\beta} \) and \(t_{\mu q_{[A]}} t^*_{\mu} \), respectively. Then the proof goes along the same lines as the one in [12, Proposition 7.3]. \(\square\)
Corollary 6.5. Let \mathcal{G} be an ultragraph and let $\mathcal{B} = \{B_n\}_{n \in \mathbb{Z}}$ be the described Fell bundle of $C^* (\mathcal{G})$. If \mathcal{G} satisfies Condition (K), then \mathcal{B} is residually aperiodic.

Proof. Suppose that \mathcal{G} satisfies Condition (K). In view of [10, Proposition 7.3], we know that all ideals of $C^* (\mathcal{G})$ are graded and of the form $I (H, B)$. So, each ideal $\mathcal{J} = \{J_n\}_{n \in \mathbb{Z}}$ of \mathcal{B} is corresponding with an ideal $I (H, B)$ with the homogenous components $J_n := I (H, B) \cap B_n$. Moreover, the quotient Fell bundle $\mathcal{B} / \mathcal{J} := \{B_n / J_n : n \in \mathbb{Z}\}$ is a grading (or a Fell bundle) for $C^* (\mathcal{G}) / I (H, B) \cong C^* (\mathcal{G} / (H, B))$. Therefore, quotient Fell bundles $\mathcal{B} / \mathcal{J}$ are corresponding with quotient ultragraphs $\mathcal{G} / (H, B)$. Since such quotient ultragraphs satisfy Condition (L) by Proposition 6.2, Lemma 6.4 follows the result.

Theorem 6.6. Let \mathcal{G} be an ultragraph. Then $C^* (\mathcal{G})$ is purely infinite (in the sense of [11]) if and only if \mathcal{G} satisfies Condition (K), and for every saturated hereditary subset H of \mathcal{G}, we have

\begin{enumerate}
\item $B_H = \emptyset$, and
\item every $A \in \mathcal{G}^0 \setminus H$ connects to a loop α in $\mathcal{G} \setminus H$, which means $A \geq s_{\mathcal{G}} (\alpha)$ (see Definition 5.3).
\end{enumerate}

Proof. First, suppose that $C^* (\mathcal{G})$ is purely infinite. If \mathcal{G} does not satisfy Condition (K), by the second paragraph in the proof of Proposition 6.2, there is a quotient ultragraph $\mathcal{G} / (H, B) / I (H, B)$ containing a loop $\alpha \in (\mathcal{G} / (H, B))^*$ with no exits in $\mathcal{G} / (H, B)$. The argument of Lemma 5.1 follows that the ideal $J := \langle q_{\alpha} (\alpha) \rangle \subseteq C^* (\mathcal{G} / (H, B))$ is Morita-equivalent to $C (\mathbb{T})$. Hence, the projection $p_{\alpha} (\alpha)$ is not properly infinite which contradicts [11, Theorem 4.16].

Now assume that H is a saturated hereditary subset of \mathcal{G}. We consider the quotient ultragraph $\mathcal{G} / (H, \emptyset)$ and take an arbitrary $[A] \in \Phi (\mathcal{G}^0) \setminus \{[\emptyset]\}$. If there is no loops $\alpha \in \mathcal{G}^{-1} (\mathcal{G}^0 \setminus H)$ with $A \geq s_{\mathcal{G}} (\alpha)$, then the ideal $I_A := \langle q_{[A]} \rangle \subseteq C^* (\mathcal{G} / (H, \emptyset))$ is AF. Thus $q_{[A]}$ is not infinite and $C^* (\mathcal{G})$ contains a non-properly infinite projection, contradicting [11, Theorem 4.16]. Moreover, we notice that for any $w \in B_H$, $[w^*]$ is a sink in $\mathcal{G} / (H, \emptyset)$ and the projection $q_{[w^*]}$ is not infinite, which is impossible.

Conversely, suppose that \mathcal{G} satisfies Condition (K) and the asserted properties hold for any saturated hereditary set H. To show that $C^* (\mathcal{G})$ is purely infinite we apply [12, Theorem 5.12] for the pure infiniteness of Fell bundles. Let $\mathcal{B} = \{B_n\}_{n \in \mathbb{Z}}$ be the natural Fell bundle in $C^* (\mathcal{G})$. Corollary 6.5 says that \mathcal{B} is residually aperiodic. Moreover, every projection in B_0 is Murray-von Neumann equivalent to a finite sum $\sum_{i=1}^n r_i s_{\alpha_i} p_B \tilde{s}_{\beta_i}$ of mutually orthogonal projections such that $|\alpha_i| = |\beta_i|$ for $1 \leq i \leq n$. Note that each projection $s_{\alpha_i} p_B \tilde{s}_{\beta_i}$ is Murray-von Neumann equivalent to $(s_{\alpha_i} p_B)^* (p_B s_{\beta_i})$ which equals to zero unless $\alpha_i = \beta_i$. Hence, in view of [12, Lemma 5.13], it suffices to show that every nonzero projection of the form $s_{\mu} p_B \tilde{s}_{\mu}$ is properly infinite.

Let $I (H, \emptyset)$ be an ideal in $C^* (\mathcal{G})$ such that $s_{\mu} p_B \tilde{s}_{\mu} \notin I (H, \emptyset)$. Then $B \cap r_\mathcal{G} (\mu) \in \mathcal{G}^0 \setminus H$. Assume $C^* (\mathcal{G} / (H, \emptyset)) = C^* (\mathcal{T}, q_{[A]})$ and let $q : C^* (\mathcal{G}) \rightarrow C^* (\mathcal{G} / (H, \emptyset))$
be the canonical quotient map by Proposition 4.6. Then \(q(s_\mu B s^*_\mu) = t_\mu q|B| t^*_\mu\) \(\neq 0\). By hypothesis, there is a path \(\lambda\) and a loop \(\alpha \in r_G^{-1}(G \setminus H)\) such that \(s_G(\lambda) \in B \cap r_G(\mu)\) and \(s_G(\alpha) \in r_G(\lambda)\). Since \(\mathcal{G}\) satisfies Condition \((K)\), \(\alpha\) has an exit \(f\) in \(r^{-1}(G \setminus H)\). Thus we have
\[
(t_\alpha q_\alpha(\alpha))^* (t_\alpha q_\alpha(\alpha))^* + t_f t_f^* \leq q_\alpha(\alpha),
\]
and since
\[
(t_\alpha q_\alpha(\alpha))^* \sim (t_\alpha q_\alpha(\alpha))^* (t_\alpha q_\alpha(\alpha))^* = q_\alpha(\alpha),
\]
it turns out that \(q_\alpha(\alpha)\) is an infinite projection in \(C^*(\mathcal{G}/(H, \emptyset)) \cong C^*(\mathcal{G})/I_{(H, \emptyset)}\). On the other hand, the fact
\[
(t_{\mu \lambda} q_\beta(\beta))^* t_\mu q|B| t^*_\mu (t_{\mu \lambda} q_\beta(\beta)) = q_\beta(\beta)
\]
says that \(q_\beta(\beta) \lesssim t_\mu q|B| t^*_\mu\) (see [15, Proposition 2.4]), and thus \(t_\mu q|B| t^*_\mu\) is infinite by [11, Lemma 3.17]. It follows that \(s_{\mu B} B^*_\mu\) is a properly infinite projection. Now apply [12, Theorem 5.11(ii)] to conclude that the \(C^*\)-algebra \(C^*(\mathcal{G}) \cong C^*_\mu(B)\) is purely infinite. □

References

Hossein Larki
Department of Mathematics
Faculty of Mathematical Sciences and Computer
Shahid Chamran University of Ahvaz
P.O. Box: 83151-61357
Ahvaz, Iran
Email address: h.larki@scu.ac.ir