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Abstract. Let G be a chemical graph with vertex set {v1, v1, . . . , vn} and degree sequence

d(G) = (degG(v1), degG(v2), . . . , degG(vn)). The inverse degree, R(G) of G is defined as

R(G) =
∑n

i=1
1

degG(vi)
. The cyclomatic number of G is defined as γ = m − n + k, where

m, n and k are the number of edges, vertices and components of G, respectively. In this

paper, some upper bounds on the diameter of a chemical graph in terms of its inverse

degree are given. We also obtain an ordering of connected chemical graphs with respect

to the inverse degree.

1. Introduction

Throughout this paper, all graphs are assumed to be undirected, simple and
connected. Let G be such a graph. We denote its vertex set and edge set by V (G)
and E(G), respectively. The degree of a vertex v, degG(v), is defined as the size of
{w ∈ V (G) | vw ∈ E(G)}. A vertex of degree one is called a pendant vertex.

The number of vertices of degree i in G is denoted by ni = ni(G). Obviously∑
i≥1 ni = |V (G)|. A chemical graph is a graph with a maximum degree of less than

or equal to 4. This reflects the fact that chemical graphs represent the structure of
organic molecules– carbon atoms being 4-valent and double bonds being counted
as single edges.
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The distance dG(u, v) between two vertices u and v of G is the length of a
shortest u− v path in G, and the diameter is defined as diam(G) = max{dG(u, v) |
u, v ∈ V (G)}.

The cyclomatic number of a connected graph G is the minimum number of edges
that must be removed from the graph to break all its cycles, making it into a tree or
forest. The cyclomatic number γ(G) can be expressed as γ(G) = m− n+ k, where
n, m and k denote the number of vertices, edges and components of G, respectively.

A graph with cyclomatic number 0, 1, 2, 3, 4 or 5 is said to be a tree, unicyclic,
bicyclic, tricyclic, tetracyclic or pentacyclic, respectively. Suppose E′ is a subset
of E(G). The subgraph G − E′ of G is obtained by deleting the edges of E′. If
uv 6∈ E(G), then the graph G+ uv obtained from G by attaching vertices u, v.

Suppose r = (r1, r2, . . . , rn) and s = (s1, s2, . . . , sn) are two non-increasing

vectors in Rn. If
∑k
i=1 ri ≤

∑k
i=1 si, 1 ≤ k ≤ n−1, and

∑n
i=1 ri =

∑n
i=1 si, then we

say that r is majorized by s, and we write r � s. Moreover, r ≺ s means that r � s
and r 6= s, see [10] for details. The non-increasing sequence d = (d1, d2, . . . , dn) of
nonnegative integers is called a graphic sequence if we can find a simple graph G
with the vertex set V (G) = {v1, v2, . . . , vn} such that di = degG(vi), 1 ≤ i ≤ n. The
inverse degree, R(G) of G was defined as R(G) =

∑n
i=1

1
degG(vi)

, under the name

zeroth-order Randić index by Kier and Hall in [9]. The inverse degree attracted
attention through conjectures of the computer program Graffiti [6]. Since then
its relationship with other graph invariants, such as diameter, edge-connectivity,
matching number, chromatic number, clique number, Wiener index, GA1-index,
ABC-index and Kf -index has been studied by several authors (see, for example,
[1, 2, 4, 5, 12]). Some extremal graphs with respect to the inverse degree are given
(see, for example, [11]).

In this paper, some upper bounds on the diameter of a chemical graph in terms
of its inverse degree are given. We also obtain an ordering of connected chemical
graphs with respect to inverse degree.

2. Bounds on the Inverse Degree

In this section, some new bounds for inverse degree are presented. We start this
section with the following lemma:

Lemma 2.1.([8]) If G is a connected graph with n vertices and cyclomatic number

γ, then n1(G) = 2−2γ+
∑∆(G)
i=3 (i−2)ni and n2(G) = 2γ+n−2−

∑∆(G)
i=3 (i−1)ni.

Proposition 2.2. Let G be a connected graph with m edges.

(1) If G ∼= Pn, then γ(G) = m− diam(G)− n1 + 2.

(2) If G 6∼= Pn, then γ(G) ≤ m− diam(G)− n1 + 1.

Proof. It is clear that γ(Pn) = m−diam(G)−n1+2. Let G be a graph such that G 6∼=
Pn. Suppose u, v ∈ V (G), dG(u, v) = diam(G) and uw1w2 . . . wdiam(G)−1v is a short-
est u− v path in G. Let A = {uw1, w1w2, . . . , wdiam(G)−2wdiam(G)−1, wdiam(G)−1v}
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and B = {uv | uv ∈ E(G) and uv is a pendant edge in G }. Then observe that
|A ∩ B| ≤ 2 and the subgraph G −

(
E \ (A ∪ B ∪ {e})

)
is an acyclic graph, where

e ∈ E \ (A ∪B). Therefore, γ(G) ≤ m− diam(G)− n1 + 1. 2

Corollary 2.3. Let G be a connected graph with n vertices and m edges except
Pn. Then diam(G) ≤ n − n1 + 1. Furthermore, if G is a chemical graph, then
diam(G) ≤ 2n− γ(G)− 5

2n1 + 1.

Proof. By Proposition 2.2, we have diam(G) ≤ n−n1 +1 since γ(G) = m−n+1. It
is well-known that for a chemical graph G, m ≤ 2n− 3

2n1. Therefore, by Proposition
2.2, diam(G) ≤ 2n− γ(G)− 5

2n1 + 1. 2

Theorem 2.4. Let G be a connected chemical graph with n vertices, m edges and
cyclomatic number γ.

(1) If G ∼= Pn, then diam(G) = 2R(G)− n1 − 1.

(2) If G 6∼= Pn, then diam(G) ≤ 4R(G)− n1.

Proof. It is easy to see that diam(Pn) = 2R(G)−n1− 1. For G 6∼= Pn, by definition
of R(G) and Lemma 2.1,

R(G) = 2− 2γ +
1

2
n2 +

4

3
n3 +

9

4
n4.

By Proposition 2.2, and the fact that m = 1
2 (n1 + 2n2 + 3n2 + 4n4), we have

R(G) ≥ n1 −
3

2
n2 −

5

3
n3 −

7

4
n4 + 2 diam(G)

= 2n1 − (n1 +
3

2
n2 +

5

3
n3 +

7

4
n4) + 2 diam(G)(2.1)

≥ 2n1 − 7(n1 +
1

2
n2 +

1

3
n3 +

1

4
n4) + 2 diam(G).

Thus diam(G) ≤ 4R(G)− n1. 2

Corollary 2.5. Let G be a connected chemical graph with n vertices and m edges.
Then R(G) = 3

2n−m+ 1
3n3 + 3

4n4. Besides, if n4 = 0, diam(G) ≤ 3R(G)− n1.

Proof. By definition,

R(G) =
∑

v∈V (G)

1

degG(v)
= n1 +

n2

2
+
n3

3
+
n4

4

=
1

12
(12n1 + 6n2 + 4n3 + 3n4).

Now, by Lemma 2.1. and γ(G) = m−n+1, we have R(G) = 3
2n−m+ 1

3n3 + 3
4n4. If

n4 = 0, then by Eq. (2.1), R(G) ≥ 2n1− (n1 + 3
2n2 + 5

3n3) + 2 diam(G). Therefore,
diam(G) ≤ 3R(G)− n1. 2
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Corollary 2.6. Let G be a connected chemical graph with n vertices and m edges.
Then R(G) ≥ 3

2n−m, with equality if and only if G ∼= Pn or Cn.

Corollary 2.7. Let G be a connected chemical graph with n vertices. Then the
following hold:

(1) If G is a tree, then R(G) ≥ 1
2n+ 1, with equality if and only if G ∼= Pn.

(2) If G is unicyclic, then R(G) ≥ 1
2n, with equality if and only if G ∼= Cn.

For n ≥ 5 we set

Γ1 = {B | B is a bicyclic graph, n3(B) = 2 and n2(B) = n− 2},
Γ2 = {B | B is a bicyclic graph, n4(B) = 1 and n2(B) = n− 1}.

Corollary 2.8. Let G be a chemical bicyclic graph with n ≥ 5 vertices. If B1 ∈ Γ1,
B2 ∈ Γ2 and G 6∈ Γ1 ∪ Γ2, then R(B1) < R(B2) = 1

2n−
1
4 < R(G).

Proof. By Corollary 2.5, if n4(G) ≥ 1, then R(G) ≥ 1
2n −

1
4 , with equality if and

only if G ∈ Γ2. If n4(G) = 0 and n3(G) = 0 or n4(G) = 0 and n3(G) = 1, then G is
not a chemical bicyclic graph. If n4(G) = 0 and n3(G) = 2, then R(G) = 1

2n −
1
3 ;

and if n4(G) = 0 and n3(G) ≥ 3, then R(G) ≥ 1
2n, proving the corollary. 2

For n ≥ 5 we set

Λ1 =
{
G | G is a tricyclic graph, n3(G) = 4 and n2(G) = n− 4

}
,

Λ2 =
{
G | G is a tricyclic graph, n4(G) = 1, n3(G) = 2 and n2(G) = n− 3

}
.

Corollary 2.9. Let G be a chemical tricyclic graph with n ≥ 5 vertices. If G1 ∈ Λ1,
G2 ∈ Λ2 and G 6∈ Λ1 ∪ Λ2, then R(G1) < R(G2) = 1

2n+ 5
12 < R(G).

Proof. By Corollary 2.5, if n4(G) ≥ 2, R(G) ≥ 1
2n+ 1

2 . If n4(G) = 1 and n3(G) ≤ 1,
or n4(G) = 0 and n3(G) ≤ 3, then G is not a chemical tricyclic graph. If n4(G) = 0
and n3(G) = 4, then R(G) = 1

2n + 1
3 . If n4(G) = 1 and n3(G) = 2, then R(G) =

1
2n + 5

12 . If n4(G) = 0 and n3(G) ≥ 5, then R(G) ≥ 1
2n + 2

3 . If n4(G) = 1 and
n3(G) ≥ 3, then R(G) ≥ 1

2n+ 3
4 , proving the result. 2

The proofs of the following two corollaries are similar to that of Corollary 2.8
and Corollary 2.9. So we omit them.

Next we define the following two sets, when n ≥ 6,

Θ1 = {G | G is a tetracyclic graph, n3(G) = 6 and n2(G) = n− 6},
Θ2 = {G | G is a tetracyclic graph, n4(G) = 1, n3(G) = 4 and n2(G) = n− 5}.

Corollary 2.10. Let G be a chemical tetracyclic graph with n ≥ 6 vertices. If
G1 ∈ Θ1 and G2 ∈ Θ2 and G 6∈ Θ1 ∪Θ2, then R(G1) < R(G2) = 1

2n+ 13
12 < R(G).
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For n ≥ 8 we define

Υ1 = {G | G is a pentacyclic graph, n3(G) = 8 and n2(G) = n− 8},
Υ2 = {G | G is a pentacyclic graph, n4(G) = 1, n3(G) = 6 and n2(G) = n− 7}.

Corollary 2.11. Let G be a chemical pentacyclic graph with n ≥ 6 vertices. If
G1 ∈ Υ1, G2 ∈ Υ2 and G 6∈ Υ1 ∪Υ2, then R(G1) < R(G2) = 1

2n+ 7
4 < R(G).

3. Ordering Chemical Trees and Unicyclic Graphs with Respect to the
Inverse Degree Index

Recall that if I ⊂ R is an interval and f : I −→ R is a real-valued function
such that f ′′(x) ≥ 0 on I, then f is convex on I. If f ′′(x) > 0, then f is strictly
convex on I. A real-valued function ϕ defined on a set Λ ⊂ Rn is said to be Schur-
convex on Λ if for all x = (x1, . . . , xn) and y = (y1 . . . , yn) ∈ Λ, if x � y, then
ϕ(x) ≤ ϕ(y). In addition, ϕ is said to be strictly Schur-convex on Λ if x ≺ y implies
that ϕ(x) < ϕ(y).

Lemma 3.1.([10]) Let I ⊂ R be an interval and let ϕ(x1, . . . , xn) =
∑n
i=1 g(xi),

where g : I −→ R. If g is strictly convex on I, then ϕ is strictly Schur-convex on
In.

Theorem 3.2. Let G and G′ be two connected graphs with the degree sequences
d(G) = (d1, . . . , dn) and d(G′) = (d′1, . . . , d

′
n), respectively. If d(G) � d(G′), then

R(G) ≤ R(G′), with equality if and only if d(G) = d(G′).

Proof. Let α : (0,∞) −→ R be a real-valued function such that α(x) = 1
x for all

x ∈ (0,∞). Then observe that for x > 0, α′′(x) = 2
x3 > 0. Therefore, α is strictly

convex on (0,∞). So by Lemma 3.1, inverse degree, R, is strictly Schur-convex.
Thus R(G) ≤ R(G′), with equality if and only if d(G) = d(G′). 2

Lemma 3.3. (See [7]) Suppose that G1 is a graph with given vertices v1 and v2,
such that degG1

(v1) ≥ 2 and degG1
(v2) = 1. In addition, assume that G2 is another

graph and w is a vertex in G2. Let G be the graph obtained from G1 and G2 by
attaching vertices w and v1. If G′ = G− wv1 + wv2, then d(G′) ≺ d(G).

Theorem 3.4. Among all graphs with n vertices and cyclomtatic number γ (1 ≤
γ ≤ n− 2), a graph G1

γ with the degree sequence

d(G1
γ) = (n− 1, γ + 1, 2, . . . , 2︸ ︷︷ ︸

γ

, 1, . . . , 1︸ ︷︷ ︸
n−γ−2

)

has the maximal inverse degree and a graph G2
γ with the degree sequence

d(G2
γ) = (x+ 1, . . . , x+ 1︸ ︷︷ ︸

y

, x, . . . , x︸ ︷︷ ︸
n−y

),
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where x = b 2n+2γ−2
n c and y ≡ 2n+2γ−2 (mod n), has the minimal inverse degree.

Proof. Let G be an arbitrary simple connected graph with n vertices and with
cyclomtatic number γ (1 ≤ γ ≤ n−2) which is different from G1

γ and G2
γ . Dimitrov

and Ali in [3] showed that d(G2
γ) ≺ d(G) ≺ d(G1

γ). Now, the result follows from
Theorem 3.2. 2

Theorem 3.5. Let Ti ∈ Ai, for 1 ≤ i ≤ 31 (See Table 1 ). If n ≥ 22 and T is

a tree such that T 6∈
⋃31
i=1Ai, then R(Ti) < R(Ti+1) for i ∈ {1, 2, . . . , 29} \ {25},

R(T25) = R(T26), R(T30) = R(T31) and R(T31) < R(T ).

Proof. By data given in the Table 1, and simple calculations one can see that,
R(Ti) < R(Ti+1) for i ∈ {1, 2, . . . , 29}\{25}, R(T25) = R(T26), R(T30) = R(T31) and
R(T31) < R(T ) for T ∈ ∪36

i=32Ai. If n1(T ) > 12, then by the repeated application of
Lemma 3.3 on the vertices of degree 1, we arrive at a tree Tl, in which R(Tl) < R(T )
and n1(Tl) = 12. Now, by Lemma 2.1 and simple calculations one can see that, T
is a chemical tree of order n with 2 ≤ n1(T ) ≤ 12 if and only if T is given in Table
1. Therefore, by Table 1, R(T31) ≤ R(Tl) < R(T ) and this completes the proof. 2

Theorem 3.6. Let Ui ∈ Bi, for 1 ≤ i ≤ 41 and U42 ∈ B43 (See Table 2). If

n ≥ 24 and U is a chemical unicyclic graph such that U 6∈
⋃41
i=1Bi

⋃
B43, then for

i ∈ {1, 2, . . . , 40} \ {25, 30, 36}, R(Ui) < R(Ui+1)

R(U25) = R(U26), R(U30) = R(U31), R(U35) = R(U37),

R(U36) = R(U38), R(U41) = R(U42),

and R(U42) < R(U).

Proof. By Table 2, we can see that, for i ∈ {1, 2, . . . , 40} \ {25, 30, 36}, R(Ui) <
R(Ui+1) and

R(U25) = R(U26), R(U30) = R(U31), R(U35) = R(U37),

R(U36) = R(U38), R(U41) = R(U42)

and R(U42) < R(U) for U ∈
⋃49
i=43Bi.

If n1(U) > 12, then by the repeated application of Lemma 3.3 on the vertices of
degree 1 we arrive at a unicyclic graph Ul, in which R(Ul) < R(U) and n1(Ul) = 12.
Now, by Lemma 2.1 and simple calculations one can see that, U is a chemical
unicyclic graph of order n with 2 ≤ n1(U) ≤ 12 if and only if U is given in Table 2.
Therefore, by Table 2, R(U42) ≤ R(Ul) < R(U) and this completes the proof. 2
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Table 1: Degree distributions of the chemical trees with n1 ≤ 12.

E.C. n4 n3 n2 n1 R E.C. n4 n3 n2 n1 R

A1 0 0 n− 2 2 1
2n+ 1 A19 2 3 n− 14 9 1

2n+ 7
2

A2 0 1 n− 4 3 1
2n+ 4

3 A20 3 1 n−13 9 1
2n+ 43

12

A3 0 2 n−6 4 1
2n+ 5

3 A21 0 8 n− 18 10 1
2n+ 11

3

A4 1 0 n−5 4 1
2n+ 7

4 A22 1 6 n−17 10 1
2n+ 15

4

A5 0 3 n−8 5 1
2n+ 2 A23 2 4 n−16 10 1

2n+ 23
6

A6 1 1 n−7 5 1
2n+ 25

12 A24 3 2 n−15 10 1
2n+ 47

12

A7 0 4 n−10 6 1
2n+ 7

3 A25 4 0 n−14 10 1
2n+ 4

A8 1 2 n−9 6 1
2n+ 29

12 A26 0 9 n−20 11 1
2n+ 4

A9 2 0 n−8 6 1
2n+ 5

2 A27 1 7 n−19 11 1
2n+ 49

12

A10 0 5 n−12 7 1
2n+ 8

3 A28 2 5 n−18 11 1
2n+ 25

6

A11 1 3 n−11 7 1
2n+ 11

4 A29 3 3 n−17 11 1
2n+ 17

4

A12 2 1 n−10 7 1
2n+ 17

6 A30 4 1 n−16 11 1
2n+ 13

3

A13 0 6 n−14 8 1
2n+ 3 A31 0 10 n−22 12 1

2n+ 13
3

A14 1 4 n−13 8 1
2n+ 37

12 A32 1 8 n−21 12 1
2n+ 53

12

A15 2 2 n−12 8 1
2n+ 19

6 A33 2 6 n−20 12 1
2n+ 9

2

A16 3 0 n−11 8 1
2n+ 13

4 A34 3 4 n−19 12 1
2n+ 55

12

A17 0 7 n−16 9 1
2n+ 10

3 A35 4 2 n−18 12 1
2n+ 14

3

A18 1 5 n−15 9 1
2n+ 41

12 A36 5 0 n−17 12 1
2n+ 19

4

Abbreviation: E.C. = Equivalence Classes.
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Table 2: Degree distributions of the connected chemical unicyclic graphs
with 0 ≤ n1 ≤ 12.

E.C. n4 n3 n2 n1 R E.C. n4 n3 n2 n1 R

B1 0 0 n 0 1
2n B26 0 9 n−18 9 1

2n+ 3

B2 0 1 n−2 1 1
2n+ 1

3 B27 1 7 n−17 9 1
2n+ 37

12

B3 0 2 n−4 2 1
2n+ 2

3 B28 2 5 n− 16 9 1
2n+ 19

6

B4 1 0 n−3 2 1
2n+ 3

4 B29 3 3 n− 15 9 1
2n+ 13

4

B5 0 3 n−6 3 1
2n+ 1 B30 4 1 n− 14 9 1

2n+ 10
3

B6 1 1 n− 5 3 1
2n+ 13

12 B31 0 10 n−20 10 1
2n+ 10

3

B7 0 4 n−8 4 1
2n+ 4

3 B32 1 8 n− 19 10 1
2n+ 41

12

B8 1 2 n− 7 4 1
2n+ 17

12 B33 2 6 n−18 10 1
2n+ 7

2

B9 2 0 n−6 4 1
2n+ 3

2 B34 3 4 n− 17 10 1
2n+ 43

12

B10 0 5 n− 10 5 1
2n+ 5

3 B35 4 2 n−16 10 1
2n+ 11

3

B11 1 3 n−9 5 1
2n+ 7

4 B36 5 0 n−15 10 1
2n+ 15

4

B12 2 1 n−8 5 1
2n+ 11

6 B37 0 11 n−22 11 1
2n+ 11

3

B13 0 6 n− 12 6 1
2n+ 2 B38 1 9 n−21 11 1

2n+ 15
4

B14 1 4 n− 11 6 1
2n+ 25

12 B39 2 7 n−20 11 1
2n+ 23

6

B15 2 2 n−10 6 1
2n+ 13

6 B40 3 5 n−19 11 1
2n+ 47

12

B16 3 0 n−9 6 1
2n+ 9

4 B41 4 3 n−18 11 1
2n+ 4

B17 0 7 n− 14 7 1
2n+ 7

3 B42 5 1 n−17 11 1
2n+ 49

12

B18 1 5 n− 13 7 1
2n+ 29

12 B43 0 12 n−24 12 1
2n+ 4

B19 2 3 n−12 7 1
2n+ 5

2 B44 1 10 n−23 12 1
2n+ 49

12

B20 3 1 n−11 7 1
2n+ 31

12 B45 2 8 n− 22 12 1
2n+ 25

6

B21 0 8 n−16 8 1
2n+ 8

3 B46 3 6 n−21 12 1
2n+ 17

4

B22 1 6 n− 15 8 1
2n+ 11

4 B47 4 4 n− 20 12 1
2n+ 13

3

B23 2 4 n−14 8 1
2n+ 17

6 B48 6 0 n−18 12 1
2n+ 9

2

B24 3 2 n−13 8 1
2n+ 35

12 B49 5 2 n−19 12 1
2n+ 53

12

B25 4 0 n−12 8 1
2n+ 3
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