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ABSTRACT. In this paper, we consider the Cauchy-type problem for a nonlinear differential
equation involving a W-Hilfer fractional derivative and prove the existence and uniqueness
of solutions in the weighted space of functions. The Ulam—Hyers and Ulam—Hyers—Rassias
stabilities of the Cauchy—type problem is investigated via the successive approximation
method. Further, we investigate the dependence of solutions on the initial conditions and
their uniqueness using e-approximated solutions. Finally, we present examples to illustrate
our main results.

1. Introduction

The theory of fractional differential equations (FDEs) [9] and their applications is
a topic of great interest in pure and applied mathematics. The popluarity of FDEs
and related problems is largely due to the many applications they have to various
branches of science and engineering. The varied applications have yielded many
different definitions of fractional derivative and fractional integral, which do not co-
incide in general. Hilfer [7] introduced the generalized Riemann—Liouville fractional
derivative of order i (n —1 < p < n € N) and of type v (0 < v < 1), defined by

v v(n— d\" — ) (n—
DLy () =10 () 1y,

which allows one to interpolate between the Riemann-Liouville derivative DZf =
RLD# and the Caputo derivative D! = “D¥_ . Furati et al. [5, 6] considered the
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basic problems of existence, uniqueness and stability of solutions of the nonlinear
Cauchy type problem involving a Hilfer fractional derivative.

Very recently, Sousa and Olivera [15] extended the concept of the Hilfer deriva-
tive operator and introduced a new definition of the fractional derivative— namely
the U-Hilfer fractional derivative of a function of order p and of type v with respect
to another function W. They discussed its calculus and derived a class of fractional
integrals and fractional derivatives by giving a particular value to the function W.
In [16] Sousa and Olivera proved a generalized Gronwall inequality involving thier
fractional integral with respect to another function and investigated basic results
pertaining to the existence, uniqueness of solutions of, and and data dependence of,
the Cauchy type problem involving a W-Hilfer differential operator.

The fundamental problem of Ulam [14] was generalized for the stability of FDEs
[18]. Stability of any FDE in the Ulam-Hyers sense is the problem of dealing with
the replacement of a given FDE by a fractional differential inequality, and obtain-
ing sufficient conditions about “When the solutions of the fractional differential
inequalities are close to the solutions of given FDE ?”. For a Ulam—Hyers stability
theory of FDEs and its recent development, one can refer to [1, 2, 3, 17, 18] and
the references therein.

Huang et al. [8] investigated HU stability of integer order delay differential
equations by the method of successive approximation. Kucche and Sutar [10] ex-
tended the idea of [8] and investigated the HU stability of nonlinear delay FDEs
with the Caputo derivative. Oliveira and Sousa [4, 17] explored Ulam—-Hyers and
Ulam—Hyers—Rassias stabilities of W- Hilfer nonlinear fractional differential and in-
tegrodifferential equations by means of the fixed point theorem of Banach.

Motivated by the work of [10, 15, 16], in this paper, we consider the —Hilfer
fractional differential equation (¥—Hilfer FDE) of the form:

(1.1) Hprri¥y ) = ft,y(t), t€la,b], 0<p<1, 0<v <1,
(1.2) L7 y(a) =ya €R, p=p+v—pv,

where # D" Y () is the (left-sided) W-Hilfer fractional derivative of order y and type

v, I};” s (left-sided) fractional integral of order 1 — p with respect to another
function ¥, in the Riemann-Liouville sense, and f : [a,b] xR — R is a given function
that will be specified latter.

The main objective of this paper is to prove the global existence and uniqueness
of solutions to ¥—Hilfer FDE (1.1)-(1.2). Using the method of successive approxi-
mations we investigate Ulam—Hyers (HU) and Ulam—Hyers—Rassias (HUR) stability
of (1.1). Utilizing the generalized Gronwall inequality [15] we obtain estimations
for the difference between two e-approximated solutions of (1.1)-(1.2). With this
we derive the results pertaining to uniqueness and dependence of solutions on the
initial conditions.

The U—Hilfer FDE (1.1)-(1.2) is quite general in the sense that for different par-
ticular values of the parameters u, v and for various specific functions ¥ the deriva-
tive operator # D‘; Y ¥ reduces to many well known fractional derivative operators
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that are recorded in [15]. Among these are the: Riemann-Liouville derivative, Ca-
puto derivative, Hilfer derivative, Katugampola Derivative, Caputo-Katugampola
Derivative, Hilfer-Katugampola Derivative, Hadmard Derivative, Caputo-Hadmard
Derivative, Hilfer-Hadmard Derivative, Chen fractional derivative, Jumarie deriva-
tive, Prabhakar derivative, Erd‘elyi-Kober derivative, Riesz derivative, Feller deriva-
tive, Weyl derivative, Cassar derivative, and Caputo-Riesz derivative.

Moreover, for W(t) =t and v = 1 the results of the current paper yield results
from [10] and for ¥(¢) =t and p = v = 1 yield results from [8].

The paper is organized as follows. In Section 2, some basic definitions and
results concerning the W—Hilfer fractional derivative that are important for the de-
velopment of the paper are given. Section 3 deals with the existence and uniqueness
of solutions of the problem (1.1)-(1.2). Section 4 deals with the HU stability of (1.1)
via successive approximations. In Section 5, we study an e—approximate solution
of (1.1). In Section 6, we provide an illustrative example.

2. Preliminaries

In this section, we recall few definitions, notions and the fundamental results
about the fractional integrals of a function with respect to another function [9], and
the W—Hilfer fractional operator [15, 16].

Let 0 <a<b<oo, A=]lab CRy=1[0,00),0<p<1land ¥ e CHAR)
be an increasing function such that ¥'(z) # 0, V z € A. The weighted spaces
Ci—pw(AR), Cf_, o (A,R)and C"Y (A, R) of functions are defined as follows:

(i) Ci_pw(AR) = {h:(a,b] = R: (¥(t) — ¥(a))' Ph(t) € C(A,R)}, with
e [1lloy . = max |[(U(t) = U(a)) 7 A1),
(i) Cf_, 4(AR)={heCi_pu(AR): D2 At) € Ci_pu(AR)},
(i) CI", 4 (AR) = {h e Ci,w(AR): "DIYA() € Ciopw(AR)}.

Definition 2.1.([9, 12]) The U-Riemann fractional integral of order p > 0 of the
function h is given by

¢
I h(t) = F(lu)/a Ly (&, mh (n) dn,
where
L4 (tm) = W' () (¥ (8) = W ()"
Lemma 2.2. Let ¢t >0, v >0 and § > 0. Then
() LT A = Y h(n),

(i) if h(t) = (U(t) = ©(a)*~L, then TEYA() = o sy (U (E) — U(a)) 0L,
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We need the following results [9, 12] which are useful in the analysis of the
paper.
Lemma 2.3.([16]) If p > 0 and 0 < p < 1, then I’;;I' is bounded from C,, w(A,R)
to Cp,w(A,R). Also, if p < p, then IZ} is bounded from C,, (A, R) to C(A,R).

Definition 2.4.([15]) The Y-Hilfer fractional derivative of a function h of order
0 < pu<1and type 0 < v <1, is defined by

— ) 1 d (1=
HDIM ; — I”(l w); v I(l v)(1—p); ¥ )
h(t) at \I]/ (t) dt at h(t)

Lemma 2.5.([15]) If h € CY(A,R), 0 < p <1 and 0 < v < 1, then

() Y ADEY Y h(t) = h(t) — Q4 (6, a)I Y h(a), where Q4 (t,a) =
(T (1)~ ¥(a))?~*
T(p) :

(ii) “D" Y T4V h(t) = h(t).

Definition 2.6.([9]) Let x4 > 0,v > 0. The one parameter Mittag-Leffler function

is defined as
)= kZ:O Pkp+1)

and the two parameter Mittag-Leffler function is defined as

oy
= U(kp+ v)

3. Existence and Uniqueness Results

In this section we derive the existence and uniqueness results of the Cauchy-
type problem (1.1)-(1.2) by utilizing the following modified version of contraction
principle.

Lemma 3.1.([13]) Let X be a Banach space and let T be an operator which maps the
element of X into itself for which T" is a contraction, where r is a positive integer
then T has a unique fixed point.

Theorem 3.2. Let0 < u<1and0<v <1, andp=pu+v—pv. Let f : (a,b] xR
R be a function such that f(-,y(-)) € Ci—p,w(A,R) for any y € Ci1_,, w(A,R), and
let f satisfies the Lipschitz condition with respect to second argument

(3.1) If(t,y1) — f(t,y2)| < Llyr — v,

for all t € (a,b] and for all y1,y2 € R, where L > 0 is a Lipschitz constant. Then
the Cauchy problem (1.1)-(1.2) has a unique solution in Ci_,, (A, R).
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Proof. The equivalent fractional integral to the initial value problem (1.1)-(1.2) is
given by [15]

y(t) = QU (t,a) yo + T4 f(t,y(t))

(3.2) — (1) yo + ﬁ [ &hensonytn) dn. ve .o

Our aim is to prove that the fractional integral (3.2) has a solution in the weighted
space C1—p; w(A,R). Consider the operator T defined on : Ci_,, ¢ (A, R) by

(3.3) (Ty)(t) = (1, a) yo + %M) / £ (6, m) £ (1, () .

By Lemma 2.3, it follows that IZ+\I'f(7y()) € Ci_, w(A,R). Clearly,y, Q4 (¢,a) €
Ci_p;w(A,R).  Therefore, from (3.3), we have Ty € Ci_,v(A,R) for any
y € Ci_,w(A,R). This proves T maps Ci_,; v (A, R) into itself. Note that the
fractional integral equation (3.2) can be written as fixed point operator equation

Yy = Ty7 RS lep;‘lf(AaR)

We prove that the above operator equation has a fixed point which will act as a
solution for the problem (1.1)-(1.2). For any ¢ € (a,b|, consider the space Cy, ¢ =
Ci_, v([a,t],R) with the norm defined by,

lyllc, s = max |(¥(w) - ¥(a))' "y(w)].

weEla,t]
Using mathematical induction for any y1,y2 € Cy, v and ¢ € (a,b], we prove that

(L(¥(t) — ¥(a)")
L(jp+p)

. . J
(3.4) IT7y1 — T yallc,, o < T(p) ly1 —v2llc, e, J €N

Let any y1,y2 € Cyw. Then from the definition of operator T given in (3.3) and
using Lipschitz condition on f, we have

||Ty1 - TyQHCt;\p
= max |(W(w) = W(a)' (Tya(w) ~ Tyo(w))|
— e (W(w) - w»“”ﬁ / " ) (FOn () — FOn,(m) dn‘
< Lwrgf(l)),(t] (U(w) — ‘I’(“))l_pr(lu)/a L4 (w,n) |y1(n) —ym)| dn‘
1—p 1 f n p—1
= e |(0(0) = 9(0) g [ {0 (0) — 9
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{0 = w(@)' ™ s () ~ ()|} |
RS [ - vy

max | (W(w) () (ga(w) — ya(w)| dn
< L”’“)F‘(j’)(“” =l [ (8 — W) b

< Ly = ellone [(9(0) = w(@) T (W) — ()"

_ (L)~ ¥(@) )
e

Thus the inequality (3.4) holds for j = 1. Let us suppose that the inequality (3.4)
holds for j =r € N, i.e. suppose

(L(¥(t) — ¥(a))")

r
F(Tqup) ”yl _yQHCt;qf

(3.5) [T"y1 — T"y2llc..e < T'(p)

holds. Next, we prove that (3.4) holds for j = r + 1. Let y1,72 € Cy, v and denote

y; = T"y; and y5 = T"ys. Then using the definition of operator T and Lipschitz
condition on f, we get

[Ty — T M allc,. o
= |T(T"y1) — T(T"y2)llc,,
= [|Ty; — Tysllc,. o

— s [(0(w) ~ ¥(@)' ™ (Tyi(w) - Ty3(w)

— e |(P(w) - wa»”ﬁ / "ot i) (Pt () — £ w3 () dn‘
I L P

< £ o {0w) — w(@)' s [ (Shtwan(em) - vy )

((wOn) = w@)' " lyin) — ys(n)]) dn}

L(W(t)&;(a»l_p / ({<temem - w@)y}

e [(9(0) = W@ 47 w) - 3 (w)] ) d
< MO [ e - w@) vt - il o do
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From (3.5), we have

(L(2(s) — ¥(a)")"
L(rp+p)

lyi —vsllc.s = IT"y1 — T"y2llc..o < T(p) ly1 — w2llc., w-

Therefore,

[Ty — T allcy.

< LEO - v@) / L () (B() — (@)

()
r(p) POy, e,
< (Fo Dt - mle, ) »
(w0 - w1 [ et - ey an)
L(:/j +<P)) oy — yallcn o (U (E) — W(a) P17, (B(t) — B(a))™ 0"
L(:;ji )) I = v2llo. o () = ‘I’(G))l”m (W) — W(a)) D+

(L(2(t) — ¥(a))")"*!
L((r+Du+p)

Thus we have

=TI(p)

||Z/1 *yQHCt;\p'

(L((t) — ¥(a)")*

Tty — T <T
|| U1 y2||ct;\ll = (p) F((T+1)u+p)

||yl - y2||Ct;\n-

Therefore, by principle of mathematical induction the inequality (3.4) holds for all

j € N and for every t in A. As a consequence we find on the fundamental interval

A,

(L(¥(b) — ¥(a)")’
L(jpu+p)

By definition of two parameter Mittag-Leffler function, we have

(3.6) 1My —T'yallc,, oar) < T(p) v — w2lle,_,. o (a )

By (LW (D) = ¥(@))") = 3 <L<‘I’§z>ju fg» Y

Note that W is the j* term of the convergent series of real numbers.

Therefore, _
(L) W)y

=0.
j=roe L(p+p)
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Thus we can choose j € N such that

(L(¥(b) — ¥(a)")
L(ju+p)

L(p)

<1,

so that T/ is a contraction.
Therefore, by Lemma 3.1, T has a unique fixed point * in Ci_,, ¢ (A, R), which
is a unique solution of the Cauchy type problem (1.1)—(1.2). O

Remark 3.3. The existence result proved above is with no restriction on the
interval A = [a, b], and hence solution y* of (1.1)-(1.2) exists for any a,b (0 < a <
b < 00). Thus the Theorem 3.2 guarantees global unique solution in Cy_,, (A, R).

4. Ulam-Hyers Stability

To discuss HU and HUR stability of (1.1), we adopt the approach of [11, 18].
For ¢ > 0 and continuous function ¢ : A — [0,00), we consider the following
inequalities:

(4.1) DUy (1) — f(ty )| e te A,
(4.2) DLy (1) — flt ()] < 6(0), te A,
(43) [TDEE ()~ by (1)) < o), te A

Definition 4.1. Problem (1.1) has HU stability if there exists a real number C; > 0
such that for each e > 0 and for each solution y* € Ci_,, ¢ (A, R) of the inequation
(4.1) there exists a solution y € Ci_,, ¢ (A, R) of (1.1) with

ly* = yllei.wam < Cre

Definition 4.2. Problem (1.1) has generalized HU stability if there exists a function
Ct € ([0,00)),[0,00)) with C¢(0) = 0 such that for each solution y* € Ci_,, v (A, R)
of the inequation (4.1) there exists a solution y € Ci_,. w(A,R) of (1.1) with

19" = Ylle,—pw(amr < Cple).
Definition 4.3. Problem (1.1) has HUR stability with respect to a function ¢ if

there exists a real number Cf 4 > 0 such that for each solution y* € Ci_,, ¢ (A, R)
of the inequation (4.3) there exists a solution y € Ci_,. ¢ (A,R) of (1.1) with

(T(t) = W(a) " (y"(t) — y(t)| < Crped(t), t € (AR).

Definition 4.4. Problem (1.1) has generalized HUR stability with respect to a
function ¢ if there exists a real number Cy 4 > 0 such that for each solution y* €
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Ci_,, (A, R) of the inequation (4.2) there exists a solution y € Ci_,. (A, R) of
(1.1) with
(U(t) = (@) (y™(t) — y(1))] < Creo(t), teA.

In the next theorem we will make use of the successive approximation method
to prove that the ¥—Hilfer FDE (1.1) is HU stable.

Theorem 4.5. Let f : (a,b] x R — R be a function such that f(-,y(-)) €
Ci_p;w(A,R) for any y € Ci_p, w(A,R) and that satisfies the Lipschitz condition

|f(t7y1) - f(tvy2)| < L|y1 _y2|a te (a7b]7 Y1,Y2 € R7

where L > 0 is a constant. For every e > 0, if y* € Ci_,, w(A,R) satisfies
R\ «
DRy (1) (1) < e te A,

then there exists a solution y of equation (1.1) in Ci_,, (A, R) with Illl:p; Yy*(a) =
Iiip;qu(a) such that

ly* = yllc, o am < ((E“(L(‘I’(b) *L‘I’(“W =D g - \Il(a))lp) e teA.

Proof. Fix any € > 0, let z € Ci_,, (A, R) satisfies
(4.4) DIy ) — f(tyT )| e, teA.

Then there exists a function oy« € Ci_p, w(A,R) ( depending on y* ) such that
loy«(t)] <€, t €A and

(4.5) ADHYyr (1) = f(t,y* (1) + 0y (1), t € A

If y*(t) satisfies (4.5) then it satisfies the equivalent fractional integral equation

Y (t) = O (£, ) 77 Yy (a) + —— / L (b m) f(m,y™ (n)) dy

I'(w)
(4.6) + ﬁ /: LH(t,m)ay-(n) dn, t € A.
Define
(4.7) w(t) =y*(t), teA

and consider the sequence {yn}zo:l C Ci—p;w(A,R) defined by

(48)  yalt) = () I Yy (a) + ﬁ / L () (s g () s £ € A
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Using mathematical induction firstly we prove that for every t € A and y; €
Cipulat]=Cyu

€ (L((t) — w(a)")
(4.9) lyi =vi-1llens < 7 RO

By definition of successive approximations and using (4.6) we have

(U(t) = (a)' ™, jEN.

lv1 = wollc.,
= max |(W(w) = ¥(@)' ™ {1 (w) ~ yo(w)} |
= max |(V(w) — ¥(a)"’ (9% (w, @) 177" 2(a) + LY Flw,yo(w)) = po(w))|
= max |(W(w) = W(a)' " (2 (0, 0) [ 2(a) + 1Y f(w, 2(0)) — 2(w))|
= max (¥(w) ~ 0(@)' i [ L) dy
< e [(0w) — (@) s [ el an)
< € mox, {(\I’(w) B qj(a»l_pf(lu) /a“’ Caw.m) dn]
< T (VO — Y@ ) - ¥(@)
— £ L0 = SO o) - wa .
Therefore,

€
_ < =
Iy = wollcww = 7 T(p+1)

which proves the inequality (4.9) for j = 1. Let us suppose that the inequality
(4.9) holds for j = r € N, we prove it for j = r + 1. By definition of successive
approximations and Lipschitz condition on f, we obtain

Y1 — y"'HCt;\If
((w) = (@)™ {yrsa(w) = o (w)}]

= max ‘(\Il(w) — (@) (T (w, e (w)) ~ LY f(w, yr_l(w)))]

wel0,t
1-p 1 b I
< Lwrg%ﬁ] [(\If(w) —¥(a)) W/a Ly (w,n) lyr(n) — yr—1(n)] d??]

_ L) ~ ()"
IN0D)

| et - w@y
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max [(W(w) ~ ¥(@)' ™ {yr(w) = yo-1(w)} | dn

we([0,n]
- LSO [ - 0@)" o — -l dr.
Using the inequality (4.9) for j=r, we have
o1 = vl < “EOEEED— ke - vy s
e (L(T(n) — ¥(a)")" 1-p
(F I ) - v ) an
_ € L+t 1—pyp; ¥ TH
= Em(‘l’(t) —V(a)) "L (U(t) — V(a))
_ € L+t _ 1—p F<TM+ 1) _ (r4+1)p
= ZW(‘I’U) ¥(a)) —F((TJFDMJFI)( (t) = U(a)""
Therefore,

€ — U(a))")rtt 1—
loria = vl < 1 — ()~ W)

which is the inequality (4.9) for j = r + 1. Using the principle of mathematical
induction the inequality (4.9) holds for every j € N and every ¢t € A.

Therefore,
€ (LOV0) = ¥@)") o g,

. <
lvj — v 1||C17p;\p(A,]R) =7 TGr+ 1)

Now using this estimation we have

e} € - e}
> s — v < —(U(b) -V ”>
||y] y] 1Hcl—p;\IJ(A7R) — L( (b) (CL)) = F(]M + 1)

j=1

Thus we have

(4.10)
5 = vimille s < FO) ~ V@) 7 (BALEG) - T@)) - 1).

Hence the series

(4.11) Yo + Z(yj —yj-1)
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(4.12) = Z — Y1)

converges in the weighted space Ci_,, v(A,R). Let y € C1_,, v(A, R) such that
oo

Noting that
n
Yn =yo+ ) (yj — yj-1)
j=1

is the n" partial sum of the series (4.11), we have
lyn —ylle,_,. w(ar) = 0 as n — oo.

Next, we prove that this limit function y is the solution of fractional integral equa-
tion with I TP yr(a) = Iilp‘ ¥y (a). Next, by the definition of successive approxi-
mation, for" any t € A, we have

\(@(t)—ﬁr(a))“ﬂ( (6 - 2% L ole) - s [ Lhtemson vo)an )|

- \(@(t) ~ W(a))” <y<t> ~ % ()T e — s | "L (tm) FOnym) dn>|

- \(@(t) (et <y<t> )+ s [ ) T )

1
T /. 5 y(ﬂ)ﬂﬂ)’

< () — W(@)' 7 {ult) — 3 ()] + \ (6) — w@) Ty () — £t y(1)]
<l =y wie + L [(F0) ~ W) s / 4 (00) ) — (o) ]
<y = nllcs_p wlan + Llgn-1 = Ylle, . wlan (T(E) — U(a)' " T4Y (T(t) — U(a))”
_ LTp 7
=y —ynllcy_,; wlap) + (m (V(t) — ¥(a)) > lyn-1 —yllc,_,, ylab, Y7 €N
By taking limit as n — oo in the above inequality, for all ¢ € [a, b], we obtain

(00 - @) (40 - BT u(0) = s [ L5 1) dn)| <o

Since, (U(t) — ¥(a))'=? £0 for all t € A, we have

(413)  y(t) = %1, a>11+“’y<a>+%u) / L (tm) F(m,y(n) di, ¢ € A.

This proves that y is the solution of (1.1)-(1.2) in Ci_,, ¢ (A,R). Further, for the
solution y* of inequation (4.4) and the solution y of the equation (1.1), using (4.7)
and (4.12), for any t € A, we have

(T(t) = T(a)) (5" (t) — y(1))]
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= |(2(t) = ¥(a)' ™" |yo(t) (t) + D (y5(1) — g1 (#)

Jj=1

(B (t) = @ (a))' =" (y;(t) = yj-1(1))]

M

1

<.
I

qu

i — vi-1llci,fab)

j=1
< %(‘I’(b) = W(a) (B (L(T(b) - ¥(a)") — 1).
Therefore,
19 = vl atan < (PR ZHD =D @) - wiapir)
This proves the equation (1.1) is HU stable. O

Corollary 4.6. Suppose that the function f satisfies the assumptions of Theorem
4.5. Then, the problem (1.1) is generalized HU stable.

Proof. Set

in the proof of Theorem 4.5. Then ¥ ;(0) = 0 and for each y* € Ci_,, ¢(A,R) that
satisfies the inequality

DUy () = Jty ()| < e tE A,

there exists a solution y of equation (1.1) in Ci_p,w(A,R) with I}II”;‘I’y*(a) =
Illlip;q/y(a) such that

ly* = vlle, . ear < ¥r(e), t €A,
Hence fractional differential equation (1.1) is generalized HU stable. O

Theorem 4.7. Let f : (a,b] x R — R be a function such that f(-,y()) €
Ci_, w(A,R) for any y € Ci_,, w(A,R) and that satisfies the Lipschitz condition

|f(t7y1) - f(tay2)| < L|y1 _y2|a te (aab]a Y1,Y2 € R7

where L > 0 is a constant. For every € > 0, if y* € Ci_,, o (A, R) satisfies

HDIY Y (1) — f(t,y*(1)| < €olt), te A,
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where ¢ € C(A,R,) is a non-decreasing function such that
LY 6(t)] < Ao(t), t €A

and X > 0 is a constant satisfying 0 < AL < 1. Then, there exists a solution
y € Ci_p,w(A,R) of equation (1.1) with Iii’”q’y*(a) = Iiip;q’y(a) such that

(00~ W) (o ()~ (0] < (=57 (V0) - W) ) o), 1€ A

Proof. For every € > 0, let y* € Ci_,, w(A, R) satisfies
Hyyp,v; U x *
DAY () = f(ty' ()] < eolt), t e A.

Proceeding as in the proof of Theorem 4.5, there exists a function o, €
Ci_p;v(A,R) (depending on y*) such that

() = Q4 (ta) LTy () + T f(LyT (1) + Loy (1), € A,

Further, using mathematical induction, one can prove that the sequence of succes-
sive approximations {y,} —; C C1_,; w(A, R) defined by

(4.14) yult) = (1, 0) TV (a >+ﬁ / CE () F(ms s () i, £ € A

satisfy the inequality

€ » _ .
(4.15) lyj = vi-1llo.o < ALY (V(t) = ¥(a)'~*6(t), j €N,
Using the inequation (4.15), we obatin

Dol = vi-tllo,, < 7 [ DDOLY | () - (@) o(t).
j=1

Jj=1

Thus

o) A B
@100 Sl it < (15 ) (9O - W@y o) 1< A
j=1
Following the steps as in the proof of the Theorem 4.5, there exists y €

Cip, w(A,R) such that ||y, — yllc,_,.o(ar — 0 as n — oo. This y is the so-
lution of the problem (1.1)-(1.2) with Ii;p’q’y(a) = Ii;p"yy* (a), and we have

y—y0+z —Yj-1)-
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Further, for the solution y* of inequation and the solution y of the equation (1.1),
for any t € A,

|(T(t) = T (a)) =7 (y"(t) — (1))

oo

= | (U(t) = (@)™ |yo(t) = | yo(t) + D (y;(t) —yj—1 (1))
j=1
< Z|(\P(t) = W(a)) 7 (y;(t) — yi-1(t))]|

Thus, we have

A
1-AL

[(T(t) = T(a)) (5" (t) — y()] < ( (W(b) - W(@))“”) €p(t), t €A,

This proves the equation (1.1) is HUR stable. O

Corollary 4.8. Suppose that the function f satisfies the assumptions of Theorem
4.7.Then, the problem (1.1) is generalized HUR stable.

Proof. Set e =1 and Cf 4 = (ﬁ (T(b) — \I/(a))l_p) in the proof of Theorem 4.7.
Then for each solution y* € Ci_,,v(A,R) that satisfies the inequality

‘HDHV Tyr(t) — f(t7y*(t))‘ < ¢t) teA,

there exists a solution y of equation (1.1) in Ci_,. ¢(A,R) with I1 PYyx(a) =
I}l 7%y (a) such that

[(T(t) = T(a)) (5" (t) — y())] < Cruo(t), t € A.

Hence the fractional differential equation (1.1) is generalized HUR stable. o

5. e—Approximate Solutions to Hilfer FDE

Definition 5.1. A function y* € Ci_,, v(A,R) that satisfies the fractional differ-
ential inequality

DIy () — f(ty (D) < e, tEA,

is called an e-approzimate solution of U—Hilfer FDE (1.1).
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Theorem 5.2.([15]) Let u, v be two integrable, non negative functions and g be a
continuous, nonnegative, nondecreasing function with domain A. If

w(t) < v (t) +gt) / L8 (r, s)u () dr,

a

then

t oo k
(5.1) u(t) < v(t) +/ ZW%’“@,TW (r)dr,¥ t € A.

Theorem 5.3. Let f : (a,b] Xx R — R be a function which satisfies Lipschitz
condition

|f(t,y1) — f(t,y2)| < Liy1 — vl

for each t € (a,b] and all y1,y2 € R, where L > 0 is constant. Let y;* €
Ci_,v(AR), (i = 1,2) be an €;-approzimte solutions of FDE (1.1) correspond-

ing to Iizp;\yyi*(a) = y((f) € R, respectively. Then,

ly1™ —y2llc,_, e (am)

< (e +e2) <(\P(b) — U (a)) Pt oo "

N PESVR DE v () ey

(w(b) - wa))(’“*”“)

o o 1§ L — W(a))H
(5:2) +lya’ —¥a |<F(p) +kZ:1F(p+ku) (W(b) — ¥(a)) )

Proof. Let y;* € Ci_,w(A,R), (i = 1,2) be an ¢;-approximate solution of FDE
(1.1) that satisfies the initial condition I(ILI‘" Yy (a) = y) € R. Then,

(5.3) Dy () — flt (1) < €, te A

Operating IZ} on both the sides of the above inequation and using the Lemma 2.5,
we get

L% e = Y MDYy () = (87 (1)
o [ ) (D) — 0w )
F(,l'll) " \/ANS] at 1 y I

LY MDYy (1)~ Tty (1)

TOES AN O AOES SN (O

v
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Therefore,

(5.4)

€

L(p+1)

(U(t) = W(a)" > |y (t) — ys” QG (t,a) =T f(t, 9" ()], i = 1,2.
Using the following inequalities

[z —y| < [o[+ [yl and |z| = |y| < [z —y[, 7,y €R,
from the inequation (5.4), for any t € A, we have

(€1 +€2) u
) (W(t) — ¥(a))

> |y () = oD Q% (1 @) — T (" (1)
" (1) =y Q% (8 @) = L7 (230" (1)
(2" (®) = 4D (t,0) = L F (100" (1))
(yz ) Q(t.a) ~ T St (1))
= [ (6) = 2" (0) = WY = UG (4,0) — L (761" (0) = S (E 9" (1)
> (1" (6) = 2" ()] — |08 — )% (t,0)|
— 1 {f (™ (1) — f(ty2" (1)} -

AV

Therefore,
) _ (€1 + €2) B w0 @yop
(1) ()|_F(u+1) (1) — w(@)" + Wi — v % (t,0)|
S (Pt (1) =ty (1))
< S o) - w@) + [0 - u)%00)

L t
— | LL(t * —y2*(n)| dn.
i L )~ o)l
Applying Theorem 5.2. with

u(t) = |y (t) — y2" (1)1,
v(t) = (5 ) - W) + ) - )%,
L

()’

gt) =
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we obtain
ly1" () — 2" (1)
(€1 + €2) (T(t) — W(a))" + | (4 — y@)02 (¢ a)‘
T D(p+1) Ya Ya wll,
((Fe(lutrei% (T(n) — T(a))* + |(yH) — y@)05 (¢, a)D i
@ p= 1
(€1 + €2)

= T (YO - ) + D — 42)9% (1,0)

(a1 +e) 5 ks W I
1) 2 F I (0~ 9@

Iy(l)—y§2)| b gk L
+ T L LI (v vy
k=1
(e1 + €2)

Tt (W(t) = W(a)" + \( W — yD0h (t,a)

€1+62 Lk +1) (k+1)p
—\I/t - U /

1) 2
Iyé - £)| L¥T(p)

PG 2 ot kY

_ q;(a))ku+p—1

1 2 (B(t) — ¥(a)! - ptp—1
+y(§>—y£)< T(p) +;Pp—|—ku —\If(a))k+ '

(W(?) S L* "
=(a+a) <l“u+1 + 3 e Ty (V0 Y )
Thus for every t € A, we have
(P (t) = P(a))' 7| (yr" (1) — y2" (1))l
—P(g))r—Pt+l s k
<(atea) <(\P(t)r(f P I (e ey LU ‘”“))(M“)
1 2 1 — Lk L
+ |y((z ) _y((l )l (F(p) +Z T(p+ kp) () - \Il(a))k >

(W(B) W)t Lk o
<<el+ez>< e + Y RET s pH)(wb)—wa»(k“)

W _ oL L* W)y
+1ya’ —a |<F(p)+];1“(p+ku)(q/(b) U(a)) )
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Therefore,

lyi™ = v2*llc,_,.vamr)

(T(b) — U(a))—PH!

Lk
P((k+1Dp—p+1)

WK

+ (W(b) - ‘If(a))(’““)“)

E
I

1
+ |y — ( Z r pr (W(b) — \If(a))k“> ,

which is the desired inequality. a

Remark 5.4. If ¢; = €3 = 0 in the inequality (5.3) then y;* and yo* are the
solutions of Cauchy problem (1.1)-(1.2) in the space Ci_,, w[a,b]. Further, for
€1 = €2 = 0 the inequality takes the form

S
® % (1) _ _ k
||y1 Y2 HC1—p;\1/(A,R) < |ya < Z p+ k,u (b) \I’(CL)) H) ;

k=

which provides the information regarding the continuous dependence of the solution
of the problem (1.1)-(1.2) on the initial condition. In addition, if gD = 42 we have

ly1* —y2"llc,_,. w(ar) = 0, which gives the uniqueness of solution of the problem
(1.1)-(1.2).

6. Examples
Example 6.1. Consider the U—Hilfer FDEs

1 1.
(6.1) Hpz2Y

y(t) = 4y(t), t € J =[0,1],

comparing with the Cauchy problem (1.1)-(1.2), we have

1 1 3 1-3,0

p=giv=gep=ptv—pw =,y =1

5 5 y*(0) =2, and f(t,y(t)) = 4y(t).

Clearly, f satisfies Lipschitz condition with Lipschitz constant L = 4. By Theorem
3.2. the initial value problem (6.1)-(6.2) has a unique solution. Further, the The-
orem 4.5. guarantees that the equation (6.1) is HU stable. Indeed, we prove that
for given € > 0 and solution y* of the inequality

11
D22 Yy (1) — dy*(t)| < e, t € [0,1],
we can find a constant C' and a solution y of the given equation (6.1) such that

lv" —ylc, s, <Ce

_3
vl

665
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For example, take ¢ = 8 and consider the inequality

H 1 1l.y
(6.3) D>yt (t) —4y*(t)| <8, t € [0,1].
Note that the function y*(t) = 2% satisfies the inequality (6.3). Further,
4
171;‘1’ *
HD(§+2 Y (t) = Oa

which shows y* is not the solution of the Cauchy problem (6.1)-(6.2). Next, as
discussed in the proof of Theorem 4.5, we define the sequence of successive approx-
imations to the solution of (6.1) as follows:

_@m-wE) Tt 4
r(3) I'(3) Jo
Then,
_ (B - W(0)"F (W) — U(0))
e . 6
B ] (T(t) —¥(0)2 16 B
yalt) = 200(0) = WO)H | 4R s (80 - 90))
In general, we have
yn(t) _ 2(\I/(t) _ \I/(O))_i 2 (4(\11]?()]2—’\1_/%0)))2” meN

The exact solution of the initial value problem (6.1)-(6.2) is given by

y(t) = lim y,(t)

o 1N (AT () — 0 (0))2 )
= lim 2(¥(t) — ¥(0)) ;) T )
(6.4) = 2(T(t) = W(0) "% By 3 (4(V(t) — ©(0))?).
Therefore
ly* = ylle, s, = max |(W(t) = w(0)' " (" (1) - y(1)

=50 4e[0,1]
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1 2
= B [PEra OO YO ~
< 2E%7%(4(\I’(1) - \II(O»%) - F(ZS)

4
= Cf €,

where C; = 1 2B, 5 (4(¥(1) - (0))z) — %%) . Along a similar line, for each
€ > 0 and for each solution y* € C,_s,y[a,b] of the inequation (4.1), one can find
by the method of successive approximation a solution y € C, _z, y[a,b] of (6.1) that
satisfies the inequality

ly* — yHCk%;\p[a,b] < Cye.

Example 6.2. Consider the nonlinear W—Hilfer FDEs

65) 7D y(e) = 2T (W) - w(0) + (¥() - WO (1), £ € 0.1],
(6.6) I, y(0) = 0.
Define f:[0,1] x [-b,0] = R, 0 < b < 0o by

Flt) = 2V (0(t) () + (0(0) ~ BO0))? 2

Then, for any ¢ € [0, 1] and u,v € [-b,b], we have
[f(tw) = f(t,0)] = [u? = v*| < 2bJu — ol.

Since f satisfies the Lipschitz condition with L = 2b, by Theorem 3.2, problem
(6.5)-(6.6) has a unique solution and by Theorem 4.5, (6.5) is HU stable.

In particular, for p = 3,v =1 and ¥(t) = ¢, the problem (6.5)-(6.6) reduces to
the following nonlinear Caputo FDEs

°p: :¥t+t3fy2(t), te0,1],

Note that for € = 2.5 and y*(¢) = 0,t € [0, 1], we have |CD§+y*(t) — ft,y ()] <
e,t € [0, 1]. Further, y*(¢) is not solution of the problem (6.7)-(6.8). Therefore, for
the Caputo FDEs (6.7)-(6.8) the successive approximation defined by (4.7)-(4.8)
takes the form

yO(t) = *(t) =0,te [07 1}

Yy
Ya(t) = y*(0) + 12, f(t,yn 1) () = 12, f(tyn_1)(), £ € [0,1], n > 1.,

667
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One can verify that the first four successive approximations yg,y1,y2,ys to the
solution of (6.7)-(6.8) are

Yo(t) =y*(t) =0,

y1(t) = t2 + (0.5158)t3,
ya(t) =2 + (0.0955)t= — (0.1041)t"
ys(t) = t7 — (0.0023)t2 — (0.0032){“2*3 — (0.0612)t % + (0.07477)t= + (0.0054)t7 .

m‘H

Further, by direct substitution one can easily check that y(t) = 3, t € [0,1] is the

exact solution of the problem (6.7)-(6.8).
From Fig.1, it very well may be seen that the successive approximations given

above are converging with the exact solution.

y
15]

I — Yexact(t)
107 — Yo(t)

— y1(t)

I — y2(t)

05 ya(t)
T T T T
Figure: 1

Next, we examine the HU stability of equation (6.7), by demonstrating that for
each € > 0 and each solution y* € C([0, 1], R) of the inequality

CD2,y" (1) — f(t,y* ()] < € where f(t,y" (1)) = ¥t+t3 —y" (1), t€0,1],

we have a solution y(t) = t2, ¢ € [0,1] of the problem (6.7)-(6.8) such that
lly — y*|| < Cye, for some Cy > 0.

Indeed,
(i) For yi(t) = t5 and € = 3.7, we have

1
DL yi(t) - flt.yi(1)] < e and |lyf —yll < Cre, Cf = 0.55.
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(ii) For y3(t) =t and € = 4.5, we have
“DE s (0) — f(u(e)] < & and lgs —yll < Cre, Cp =044,
(iii) For y3(t) = t5 and € = 4.7, we have
ODEy ()~ F(y ()] < e and g5 — ]l < Cpe, Cp =043,
(iv) For y;(t) = t? and € = 4.9, we have

1
“Dgyi(®) — F(Lyi(e)] < & and |y — | < Cre, Cp =0.41.

(v) For yz(t) =t2 and € = 5, we have

1
‘CD§+yg‘(t) - f(t7y§(t))‘ <e, and |yt —yl < Cre, Cp = 0.40.

- yExact(t)
—— yi(t), €=3.7

0.2 0.4 06 08 1.0
Figure: 2

Remark 6.3. From Fig.2, it follows that the e-approximated solutions y; (¢), (i =
1,2,3,4,5) approaches to the exact solution ygzqct(t) when € — 0.
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