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A CERTAIN KÄHLER POTENTIAL OF THE POINCARÉ

METRIC AND ITS CHARACTERIZATION

Young-Jun Choi, Kang-Hyurk Lee, and Sungmin Yoo

Abstract. We will show a rigidity of a Kähler potential of the Poincaré

metric with a constant length differential.

1. Introduction

From the fundamental result of Donnelly-Fefferman [4], the vanishing of the
space of L2 harmonic (p, q) forms has been an important research theme in
the theory of complex domains. Since M. Gromov ([6], see also [2]) suggested
the concept of the Kähler hyperbolicity and gave a connection to the vanish-
ing theorem, there have been many studies on the Kähler hyperbolicity of the
Bergman metric, which is a fundamental Kähler structure of bounded pseu-
doconvex domains. The Kähler structure ω is Kähler hyperbolic if there is a
global 1-form η with dη = ω and sup ‖η‖ω <∞.

In [3], H. Donnelly showed the Kähler hyperbolicity of Bergman metric on
some class of weakly pseudoconvex domains. For bounded homogeneous do-
main D in Cn and its Bergman metric ωD especially, he used a classical result
of Gindikin [5] to show that sup ‖d logKD‖ωD

<∞. Here KD is the Bergman
kernel function of D so logKD is a canonical potential of ωD.

In their paper [7], S. Kai and T. Ohsawa gave another approach. They
proved that every bounded homogeneous domain has a Kähler potential of the
Bergman metric whose differential has a constant length.

Theorem 1.1 (Kai-Ohsawa [7]). For a bounded homogeneous domain D in
Cn, there exists a positive real valued function ϕ on D such that logϕ is a
Kähler potential of the Bergman metric ωD and ‖d logϕ‖ωD

is constant.
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It can be obtained by the facts that each homogeneous domain is biholomor-
phic to a Siegel domain (see [10]) and a homogeneous Siegel domain is affine
homogeneous (see [8]).

More precisely, let us consider a bounded homogeneous domain D in Cn and
a biholomorphism F : D → S for a Siegel domain S. For the Bergman kernel
function KS of S which is a canonical potential of the Bergman metric ωS , it is
easy to show that d logKS has a constant length with respect to ωS from the
affine homogeneity of S (the group of affine holomorphic automorphisms acts
transitively on S). Since logKS is a Kähler potential of ωS , the transformation
formula of the Bergman kernel implies that the pullback F ∗ logKS = logKS◦F
is also a Kähler potential of ωD. Using the fact that F : (D,ωD) → (S, ωS)
is an isometry, we have ‖d(F ∗ logKS)‖ωD

= ‖d logKS‖ωS
◦ F . As a function

ϕ in Theorem 1.1, we can choose the pullback KS ◦ F of the Bergman kernel
function of the Siegel domain.

At this junction, it is natural to ask:

If there is a Kähler potential logϕ with a constant ‖d logϕ‖ωD
,

is it always obtained by the pullback of the Bergman kernel
function of the Siegel domain?

The aim of this paper is to discuss of this question in the 1-dimensional case.
The only bounded homogeneous domain in C is the unit disc ∆ = {z ∈ C :

|z| < 1} up to the biholomorphic equivalence and the 1-dimensional correspon-
dence of the Bergman metric, namely a holomorphically invariant hermitian
structure, is only the Poincaré metric. Hence the main theorem as follows
gives a positive answer to the question.

Theorem 1.2. Let ω∆ be the Poincaré metric of the unit disc ∆. Suppose that
there exists a positive real valued function ϕ : ∆→ R such that logϕ is a Kähler
potential of the Poincaré metric and ‖d logϕ‖ω∆

is constant on ∆. Then ϕ is

the pullback of the canonical potential on the half-plane H = {z ∈ C : Re z < 0}.

Note that 1-dimensional Siegel domain is just the half-plane. We will intro-
duce the Poincaré metric and related notions in Section 2. As an application
of the main theorem, we can characterize the half-plane by the canonical po-
tential.

Corollary 1.3. Let D be a simply connected, proper domain in C with a
Poincaré metric ωD = iλdz ∧ dz̄. If ‖d log λ‖ωD

is constant on D, then D

is affine equivalent to the half-plane H = {z ∈ C : Re z < 0}.

In Section 2, we will introduce notions and concrete version of the main
theorem. Then we will study the existence of a nowhere vanishing complete
holomorphic vector field which is tangent to a potential whose differential is
of constant length (Section 3). Using relations between complete holomorphic
vector fields and model potentials in Section 4, we will prove theorems.
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2. Background materials

Let X be a Riemann surface. The Poincaré metric of X is a complete
hermitian metric with a constant Gaussian curvature, −4. The Poincaré metric
exists on X if and only if X is a quotient of the unit disc. If X is covered by
∆, the Poincaré metric can be induced by the covering map π : ∆ → X
and it is uniquely determined. Throughout of this paper, the Kähler form of
the Poincaré metric of X, denoted by ωX , stands for the metric also. When
ωX = iλdz ∧ dz̄ in the local holomorphic coordinate function z, the curvature
can be written by

κ = − 2

λ

∂2

∂z∂z̄
log λ.

So the curvature condition κ ≡ −4 implies that

∂2

∂z∂z̄
log λ = 2λ,

equivalently

ddc log λ = 2ωX ,

where dc = i
2 (∂−∂). That means the function 1

2 log λ is a local Kähler potential

of ωX . Any other local potential of ωX is always of the form 1
2 log λ+ log |f |2

where f is a local holomorphic function on the domain of z. We call 1
2 log λ the

canonical potential with respect to the coordinate function z. For a domain D
in C, the canonical potential of D means the canonical potential with respect
to the standard coordinate function of C.

Let us consider the Poincaré metric ω∆ of the unit disc ∆:

ω∆ = i
1(

1− |z|2
)2 dz ∧ dz̄ = iλ∆dz ∧ dz̄.

The canonical potential λ∆ satisfies

‖d log λ∆‖2ω∆
=

∥∥∥∥∂ log λ∆

∂z
dz +

∂ log λ∆

∂z̄
dz̄

∥∥∥∥2

ω∆

=
∂ log λ∆

∂z

∂ log λ∆

∂z̄

1

λ∆
= 4 |z|2 ,

so does not have a constant length. By the same way of Kai-Ohsawa [7], we
can get a model for ϕ in Theorem 1.1 for the unit disc,

(2.1) ϕθ(z) =

∣∣1 + eiθz
∣∣4(

1− |z|2
)2 for θ ∈ R

as a pullback of the canonical potential λH = 1/ |Rew|2 on the left-half plane
H = {w : Rew < 0} by the Cayley transforms (see (4.3) for instance). The
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term θ depends on the choice of the Cayley transform. Since logϕθ = log λ∆ +

log
∣∣1 + eiθz

∣∣4, the function 1
2 logϕθ is a Kähler potential. Moreover

‖d logϕθ‖2ω∆
≡ 4.

At this moment, we introduce a significant result of Kai-Ohsawa.

Theorem 2.1 (Kai-Ohsawa [7]). For a bounded homogeneous domain D in
Cn, suppose that there is a Kähler potential logψ of the Bergman metric ωD
with a constant ‖d logψ‖ωD

, then ‖d logψ‖ωD
= ‖d logϕ‖ωD

where ϕ is as in
Theorem 1.1.

Suppose that a positively real valued ϕ on ∆ satisfies that ddc logϕ = 2ω∆

and ‖d logϕ‖2ω∆
≡ c for some constant c. Theorem 2.1 implies that c must be

4. Therefore, we can rewrite Theorem 1.2 by:

Theorem 2.2. If there exists a function ϕ : ∆→ R satisfying

(2.2) ddc logϕ = 2ω∆ and ‖d logϕ‖2ω∆
≡ 4,

then ϕ = rϕθ as in (2.1) for some r > 0 and θ ∈ R.

Corollary 1.3 can be also written by:

Corollary 2.3. Let D be a simply connected, proper domain in C with a
Poincaré metric ωD = iλdz∧dz̄. If ‖d log λ‖2ωD

≡ 4, then D is affine equivalent

to the half-plane H = {z ∈ C : Re z < 0}.

3. Existence of nowhere vanishing complete holomorphic
vector field

In this section, we will study an existence of a complete holomorphic tangent
vector field on a Riemann surface X which admits a Kähler potential of the
Poincaré metric with a constant length differential.

By a holomorphic tangent vector field of a Riemann surface X, we means
a holomorphic section W to the holomorphic tangent bundle T 1,0X. If the
corresponding real tangent vector field ReW =W+W is complete, we also say
W is complete. Thus the complete holomorphic tangent vector field generates
a 1-parameter family of holomorphic transformations.

In this section, we will show that:

Theorem 3.1. Let X be a Riemann surface with the Poincaré metric ωX . If
there is a function ϕ : X → R with

(3.1) ddc logϕ = 2ωX and ‖d logϕ‖2ωX
≡ 4,

then there is a nowhere vanishing complete holomorphic vector field W such
that (ReW)ϕ ≡ 0.
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Proof. Take a local holomorphic coordinate function z and let ωX = iλdz∧dz̄.
The equation (3.1) can be written by

(logϕ)zz̄ = 2λ and (logϕ)z (logϕ)z̄ = 4λ.

Here, (logϕ)z = ∂
∂z logϕ, (logϕ)z̄ = ∂

∂z̄ logϕ and (logϕ)zz̄ = ∂2

∂z∂z̄ logϕ. This
implies that(

ϕ−1/2
)
z

=
∂

∂z
ϕ−1/2 = −1

2
ϕ−1/2 (logϕ)z ;(

ϕ−1/2
)
zz̄

=
∂2

∂z∂z̄
ϕ−1/2 = −1

2
ϕ−1/2 (logϕ)zz̄ +

1

4
ϕ−1/2 (logϕ)z (logϕ)z̄

= −1

2
ϕ−1/2

(
(logϕ)zz̄ −

1

2
(logϕ)z (logϕ)z̄

)
= 0.

Thus we have that the function ϕ−1/2 is harmonic so
(
ϕ−1/2

)
z

is holomorphic.
Let us consider a local holomorphic vector field,

W =
i(

ϕ−1/2
)
z

∂

∂z
=
−2iϕ3/2

ϕz

∂

∂z
=
−2iϕ1/2

(logϕ)z

∂

∂z
.

In any other local holomorphic coordinate function w, we have

W =
i(

ϕ−1/2
)
z

∂

∂z
=

i(
ϕ−1/2

)
w
∂w
∂z

∂w

∂z

∂

∂w
=

i(
ϕ−1/2

)
w

∂

∂w
,

so W is globally defined on X. Now we will show that W satisfies conditions
in the theorem.

Since ∥∥∥ϕ−1/2W
∥∥∥2

ωX

=

∥∥∥∥ −2i

(logϕ)z

∂

∂z

∥∥∥∥2

ωX

=
4λ

(logϕ)z (logϕ)z̄
= 1,

the vector field ϕ−1/2W has a unit length with respect to the complete metric
ωX , so the corresponding real vector field Reϕ−1/2W = ϕ−1/2(W + W) is
complete. Moreover

(ReW)ϕ =
−2iϕ3/2

ϕz
ϕz +

2iϕ3/2

ϕz̄
ϕz̄ = 0.

Hence it remains to show the completeness of W. Take any integral curve
γ : R→ X of ϕ−1/2ReW. It satisfies(

ϕ−1/2(ReW)
)
◦ γ = γ̇

equivalently

(ReW) ◦ γ =
(
ϕ1/2 ◦ γ

)
γ̇.
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The condition (ReW)ϕ ≡ 0, equivalently ϕ−1/2(ReW)ϕ ≡ 0, implies that the
curve γ is on a level set of ϕ so ϕ1/2 ◦ γ ≡ C for some constant C. The curve
σ : R→ X defined by σ(t) = γ(Ct) satisfies

(ReW) ◦ σ(t) = (ReW)(γ(Ct)) = Cγ̇(Ct) = σ̇(t).

This means that σ : R → X is the integral curve of ReW; therefore ReW is
complete. This completes the proof. �

4. Complete holomorphic vector fields on the unit disc

In this section, we introduce parabolic and hyperbolic vector fields on the
unit disc and discuss their relation to the model potential,

(4.1) ϕ0 =
|1 + z|4(
1− |z|2

)2 ,

where it is ϕθ in (2.1) with θ = 0.

4.1. Nowhere vanishing complete holomorphic vector fields from the
left-half plane

On the left-half plane H = {w ∈ C : Rew < 0}, there are two kinds of affine
transformations:

Ds(w) = e2sw and Ts(w) = w + 2is

for s ∈ R. Their infinitesimal generators are

D = 2w
∂

∂w
and T = 2i

∂

∂w

which are nowhere vanishing complete holomorphic vector fields of H. Note
that

(4.2) (Ts)∗D = 2(w − 2is)
∂

∂w
= D − 2sT and (Ts)∗T = 2i

∂

∂w
= T

for any s.
For the Cayley transform F : H→ ∆ defined by

(4.3)

F : H −→ ∆

w 7−→ z =
1 + w

1− w
,

we can take two nowhere vanishing complete holomorphic vector fields of ∆:

H = F∗(D) = (z2 − 1)
∂

∂z

and

P = F∗(T ) = i(z + 1)2 ∂

∂z
.
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When we define Hs = F ◦ Ds ◦ F−1 and Ps = F ◦ Ts ◦ F−1, vector fields
H and P are infinitesimal generators of Hs and Ps, respectively. Moreover
Equation (4.2) can be written by

(4.4) (Ps)∗H = H− 2sP and (Ps)∗P = P.
There is another complete holomorphic vector field R = iz∂/∂z generating the
rotational symmetry

(4.5) Rs(z) = eisz.

The holomorphic automorphism group of ∆ is a real 3-dimension connected Lie
group (cf. see [1, 9]), we can conclude that any complete holomorphic vector
field can be a real linear combination ofH, P andR. SinceH(−1) = P(−1) = 0
and R(−1) = −i∂/∂z, we have:

Lemma 4.1. If W is a complete holomorphic vector field of ∆ satisfying
W(−1) = 0, then there exist a, b ∈ R with W = aH+ bP.

4.2. Hyperbolic vector fields

In this subsection, we will show that the hyperbolic vector field H can not
be tangent to a Kähler potential with a constant length differential.

By the simple computation,

H(logϕ0) = (z2 − 1)
2(1 + z̄)

(1 + z)(1− |z|2)
= 2
|z|2 + z − z̄ − 1

(1− |z|2)
,

we get
(ReH) logϕ0 ≡ −4.

That means ReH is nowhere tangent to ϕ0. Moreover, we have:

Lemma 4.2. Let ϕ : ∆ → R with ddc logϕ = 2ω∆ and ‖d logϕ‖2ω∆
≡ 4. If

(ReH) logϕ ≡ c for some c, then c = ±4.

Proof. Since ddc logϕ0 = 2ω∆ also, the function logϕ − logϕ0 is harmonic;
hence we may let logϕ = logϕ0 +f+ f̄ for some holomorphic function f : ∆→
C. Then the condition (ReH) logϕ ≡ c can be written by

(4.6) (ReH) logϕ = −4 + (z2 − 1)f ′ + (z̄2 − 1)f̄ ′ ≡ c.
This implies that (z2 − 1)f ′ is constant. Thus we can let

(4.7) f ′ =
C

z2 − 1

for some C ∈ C. Since

∂

∂z
logϕ = f ′ +

∂

∂z
logϕ0 = f ′ +

2(1 + z̄)

(1 + z)(1− |z|2)
,

we have

‖d logϕ‖2ω∆
=

(
∂

∂z
logϕ

)(
∂

∂z̄
logϕ

)
1

λ∆
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= |f ′|2 (1−|z|2)2+
2(1 + z̄)(1− |z|2)

(1 + z)
f̄ ′+

2(1 + z)(1− |z|2)

(1 + z̄)
f ′+‖d logϕ0‖2ω∆

.

From the condition ‖d logϕ‖2ω∆
≡ 4 ≡ ‖d logϕ0‖2ω∆

, it follows

|f ′|2 (1− |z|2)2 = −2(1 + z̄)(1− |z|2)

(1 + z)
f̄ ′ − 2(1 + z)(1− |z|2)

(1 + z̄)
f ′,

equivalently

(4.8)
1

2
|f ′|2 (1− |z|2) = − (1 + z̄)

(1 + z)
f̄ ′ − (1 + z)

(1 + z̄)
f ′.

Applying (4.7) to the right side above,

− (1 + z̄)

(1 + z)
f̄ ′ − (1 + z)

(1 + z̄)
f ′ =

(1 + z̄)

(1 + z)

C̄

1− z̄2
+

(1 + z)

(1 + z̄)

C

1− z2

=
(1 + z̄ − z − |z|2)C̄ + (1− z̄ + z − |z|2)C

|1− z2|2
.

Let C = a+ bi for a, b ∈ R, then

(1 + z̄ − z − |z|2)C̄ + (1− z̄ + z − |z|2)C = 2a(1− |z|2) + 2bi(z − z̄).
Now Equation (4.8) can be written by

1

2

|C|2

|z2 − 1|2
(1− |z|2) =

2a(1− |z|2) + 2bi(z − z̄)
|1− z2|2

,

so we have
(|C|2 − 4a)(1− |z|2) = 4bi(z − z̄)

on ∆. Take ∂∂̄ to above, we have

|C|2 − 4a = 0.

Simultaneously b = 0 so C = a. Now we have a2 = 4a. Such a is 0 or 4. If
f ′ = 4/(z2 − 1), then c = 4 from (4.6). If f ′ = 0, then c = −4. �

4.3. Parabolic vector fields

Since

P(logϕ0) = i(z + 1)2 2(1 + z̄)

(1 + z)(1− |z|2)
= 2i

|1 + z|2

1− |z|2
,

we have
(ReP) logϕ0 ≡ 0.

That means that the parabolic vector field P is tangent to ϕ0. The vector
field P is indeed the nowhere vanishing complete holomorphic vector field as
constructed in Theorem 3.1 corresponding to ϕ0. The main result of this section
is the following.

Lemma 4.3. Let ϕ : ∆ → R with ddc logϕ = 2ω∆ and ‖d logϕ‖2ω∆
≡ 4. If

(ReP) logϕ ≡ c for some c, then c = 0 and ϕ = rϕ0 for some r > 0.
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Proof. By the same way in the proof of Lemma 4.2, we let logϕ = logϕ0+f+f̄
for some holomorphic f : ∆→ C. Since

(4.9) (ReP) logϕ = i(z + 1)2f ′ − i(z̄ + 1)2f̄ ′ ≡ c
it follows that (z + 1)2f ′ is constant. Thus we have

(4.10) f ′ =
C

(z + 1)2

for some C ∈ C. Since (4.8) also holds, we can apply (4.10) to the right side of
(4.8) to get

− (1 + z̄)

(1 + z)
f̄ ′ − (1 + z)

(1 + z̄)
f ′ = − (1 + z̄)

(1 + z)

C̄

(z̄ + 1)2
− (1 + z)

(1 + z̄)

C

(z + 1)2

=
−C̄
|1 + z|2

+
−C
|1 + z|2

=
−C̄ − C
|1 + z|2

.

Now Equation (4.8) is can be written by

|C|2

|z + 1|4
(1− |z|2) = 2

−C̄ − C
|1 + z|2

equivalently

|C|2 (1− |z|2) = −
(
2C̄ + 2C

)
|1 + z|2 .

Evaluating z = 0, we have |C|2 = −2C̄−2C. And taking ∂∂̄ to above, we have

− |C|2 = −2C̄−2C. It follows that C = 0 so f is constant. Moreover Equation
(4.9) implies that c = 0. �

5. Proof of the main theorem

Now we prove Theorem 2.2 and Corollary 2.3.

Proof of Theorem 2.2. Let ϕ : ∆→ R be a function with

ddc logϕ = 2ω∆ and ‖d logϕ‖2ω∆
≡ 4.

By Theorem 3.1, we can take a nowhere vanishing complete holomorphic vector
field W with (ReW)ϕ ≡ 0. Since every automorphism of ∆ has at least one
fixed point on ∆ and W is nowhere vanishing on ∆, any nontrivial automor-
phism generated by ReW has no fixed point in ∆ and should have a common
fixed point p at the boundary ∂∆. This means p is a vanishing point of W.
Consider a rotational symmetry Rθ in (4.5) satisfying Rθ(−1) = p. We will
show that ϕ ◦ Rθ = rϕ0 where ϕ0 is as in (4.1) and r > 0. This implies that
ϕ = rϕ−θ.

Now we can simply denote by ϕ = ϕ ◦ Rθ and W = (R−1
θ )∗W. Since −1 is

a vanishing point of W, Lemma 4.1 implies

W = aH+ bP
for some real numbers a, b.
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Suppose that a 6= 0. Equation (4.4) implies that

(Ps)∗W = (Ps)∗(aH+ bP) = aH− 2asP + bP = aH+ (b− 2as)P.

Take s = b/2a, then W̃ = (Ps)∗W = aH. Let ϕ̃ = ϕ ◦ P−s for this s. Then

ϕ̃ satisfies conditions in Theorem 2.2 and (Re W̃)ϕ̃ ≡ 0. But Lemma 4.2 said

that (Re W̃)ϕ̃ = a(ReH)ϕ̃ ≡ ±4aϕ̃. It contradicts to (ReW)ϕ ≡ 0 equivalently

(Re W̃)ϕ̃ ≡ 0. Thus a = 0.
Now W = bP. Since W is nowhere vanishing already, b 6= 0. The condition

(ReW)ϕ ≡ 0 implies (ReP)ϕ ≡ 0. Lemma 4.3 says that ϕ = rϕ0 for some
positive r. This completes the proof. �

Proof of Corollary 2.3. Let D be a simply connected proper domain in C and
let ωD = iλDdz ∧ dz̄ be its Poincaré metric with ‖d log λD‖2ωD

≡ 4. By The-
orem 3.1, there is a nowhere vanishing complete holomorphic vector field W
with (ReW)λD ≡ 0. Take a biholomorphism G : ∆→ D and let

ϕ = λD ◦G and Z = (G−1)∗W .

Note that (ReZ)ϕ ≡ 0 by assumption. Using the rotational symmetry Rθ of
∆ which is also affine, we may assume that Z(−1) = 0 and we will prove that
G is a Cayley transform.

Since G : (∆, ω∆) → (D,ωD) is an isometry, we have G∗ωD = ω∆, equiva-
lently

ϕ =
λ∆

|G′|2
.

Moreover d logϕ = d(G∗ log λD) implies that ‖d logϕ‖2ωD
= ‖d(G∗ log λD)‖2ωD

≡ 4. By Theorem 2.2, we have

λ∆

|G′|2
= ϕ = rϕ0 = rλ∆ |1 + z|4

for some positive r. This means that G′ = eiθ
′
/
√
r(1 + z)2 for some θ′ ∈ R so

that

G =
eiθ

′

2
√
r

z − 1

z + 1
+ C.

Since the function z 7→ (z − 1)/(z + 1) is the inverse mapping of the Cayley
transform F : H→ ∆ in (4.3), we have

G ◦ F : H→ D

z 7→ eiθ
′

2
√
r
z + C.

This implies that D = G(F (H)) is affine equivalent to H. �
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