ON THE EXTENSION DIMENSION OF MODULE CATEGORIES

Yeyang Peng and Tiwei Zhao

Abstract

Let Λ be an Artin algebra and $\bmod \Lambda$ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length $\operatorname{of} \bmod \Lambda$. We give an upper bound for the extension dimension of $\bmod \Lambda$ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of $D \Lambda$

1. Introduction

The dimension of triangulated categories was studied in [2, 9], which measures how quickly the category can be built from one object. This dimension can be used to compute the representation dimension of Artin algebras [7,8,11]. Rouquier proved in [9] that the dimension of the bounded derived category of $\bmod \Lambda$ is at most $\min \{g l . \operatorname{dim} \Lambda, \operatorname{LL}(\Lambda)-1\}$, where $\operatorname{gl} \cdot \operatorname{dim} \Lambda$ and $\operatorname{LL}(\Lambda)$ are the global dimension and the Loewy length of an Artin algebra Λ, respectively.

Let \mathcal{A} be an abelian category having enough projective objects and enough injective objects. As an analogue of the dimension of triangulated categories, the (extension) dimension $\operatorname{dim} \mathcal{A}$ of an abelian category \mathcal{A} was introduced by Beligiannis in [1], also see [3]. Let Λ be an Artin algebra. The extension dimension $\operatorname{dim} \bmod \Lambda$ is also an invariant that measures how far Λ is from having finite representation type. Thus it is an important and meaningful work to look for a suitable upper bound for the extension dimension. It was proved in [1] that $\operatorname{dim} \bmod \Lambda \leq \operatorname{LL}(\Lambda)-1$. Zheng, Ma and Huang also gave an upper bound for the extension dimension of $\bmod \Lambda$ in terms of the projective dimension of a certain class of simple right Λ-modules and the radical layer length of Λ in [12]. Based on these works, in this paper we will study further properties of the extension dimension of $\bmod \Lambda$ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of Λ, and will give

[^0]a smaller upper bound for the extension dimension of $\bmod \Lambda$ which is better than $\operatorname{LL}(\Lambda)-1$ and $\operatorname{gl} . \operatorname{dim} \Lambda$. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.
Let Λ be an Artin algebra and $\bmod \Lambda$ the category of finitely generated right Λ-modules. In Section 3, we investigate the radical layer length of modules, and get that the radical layer lengths of Λ and $D \Lambda$ are equal. We also prove that the radical layer length of Λ is an upper bound for the radical layer length of $\bmod \Lambda$. In Section 4, we give an upper bound for the extension dimension of $\bmod \Lambda$ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of $D \Lambda$, that is,

Theorem 1.1 (Corollary 4.4). Let \mathcal{S} be a subset of the set of the simple modules with finite projective dimension and finite injective dimension in $\bmod \Lambda$. Then $\operatorname{dim} \bmod \Lambda \leq \min \{\operatorname{id} \mathcal{S}, \operatorname{pd} \mathcal{S}\}+\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$.

In Section 5 , we give examples to show that there is no necessary relationship between $\operatorname{id} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$ and $\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)$.

2. Preliminaries

Let \mathcal{A} be an abelian category. All subcategories of \mathcal{A} are full, additive and closed under isomorphisms and all functors between additive categories are additive. For a subclass \mathcal{U} of \mathcal{A}, we use add \mathcal{U} to denote the subcategory of \mathcal{A} consisting of direct summands of finite direct sums of objects in \mathcal{U}.

Let $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots, \mathcal{U}_{n}$ be subcategories of \mathcal{A}. Define
$\mathcal{U}_{1} \diamond \mathcal{U}_{2}:=\operatorname{add}\left\{A \in \mathcal{A} \mid\right.$ there is an exact sequence $0 \rightarrow U_{1} \rightarrow A \rightarrow U_{2} \rightarrow 0$ in \mathcal{A}

$$
\text { with } \left.U_{1} \in \mathcal{U}_{1} \text { and } U_{2} \in \mathcal{U}_{2}\right\}
$$

The category $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}$ can be inductively described as follows $\mathcal{U}_{1} \diamond \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}:=\operatorname{add}\{A \in \mathcal{A} \mid$ there is an exact sequence $0 \rightarrow U \rightarrow A \rightarrow V \rightarrow 0$

$$
\text { in } \left.\mathcal{A} \text { with } U \in \mathcal{U}_{1} \text { and } V \in \mathcal{U}_{2} \diamond \cdots \diamond \mathcal{U}_{n}\right\} .
$$

For a subcategory \mathcal{U} of \mathcal{A}, set $\langle\mathcal{U}\rangle_{0}=0,\langle\mathcal{U}\rangle_{1}=\operatorname{add} \mathcal{U},\langle\mathcal{U}\rangle_{n}=\langle\mathcal{U}\rangle_{1} \diamond\langle\mathcal{U}\rangle_{n-1}$ for any $n \geq 2$, and $\langle\mathcal{U}\rangle_{\infty}=\bigcup_{n \geq 0}\langle\mathcal{U}\rangle_{n}([1])$. If T is an object in \mathcal{A}, we write $\langle T\rangle_{n}$ instead of $\langle\{T\}\rangle_{n}$. For any subcategories \mathcal{U}, \mathcal{V} and \mathcal{W} of \mathcal{A}, by [3, Proposition 2.2] we have

$$
(\mathcal{U} \diamond \mathcal{V}) \diamond \mathcal{W}=\mathcal{U} \diamond(\mathcal{V} \diamond \mathcal{W})
$$

Definition 2.1 ([3, Definition 5.2]). For any subcategory \mathcal{X} of \mathcal{A}, one defines

$$
\begin{array}{r}
\operatorname{size}_{\mathcal{A}} \mathcal{X}:=\inf \left\{n \geq 0 \mid \mathcal{X} \subseteq\langle T\rangle_{n+1} \text { with } T \in \mathcal{A}\right\} \\
\operatorname{rank}_{\mathcal{A}} \mathcal{X}:=\inf \left\{n \geq 0 \mid \mathcal{X}=\langle T\rangle_{n+1} \text { with } T \in \mathcal{A}\right\}
\end{array}
$$

The extension dimension $\operatorname{dim} \mathcal{A}$ of \mathcal{A} is defined to be $\operatorname{dim} \mathcal{A}:=\operatorname{rank}_{\mathcal{A}} \mathcal{A}$.
It is easy to see that $\operatorname{dim} \mathcal{A}=\operatorname{rank}_{\mathcal{A}} \mathcal{A}=\operatorname{size}_{\mathcal{A}} \mathcal{A}$. Also one has the following easy and useful observations.

Proposition 2.2 ([12, Proposition 2.2]). Let \mathcal{U}_{1} and \mathcal{U}_{2} be subcategories of \mathcal{A} with $\mathcal{U}_{1} \subseteq \mathcal{U}_{2}$. Then
(1) If \mathcal{V}_{1} and \mathcal{V}_{2} are subcategories of \mathcal{A} with $\mathcal{V}_{1} \subseteq \mathcal{V}_{2}$, then $\mathcal{U}_{1} \diamond \mathcal{V}_{1} \subseteq \mathcal{U}_{2} \diamond \mathcal{V}_{2}$;
(2) $\left\langle\mathcal{U}_{1}\right\rangle_{n} \subseteq\left\langle\mathcal{U}_{2}\right\rangle_{n}$ for any $n \geq 1$;
(3) $\left\langle\mathcal{U}_{1}\right\rangle_{n} \subseteq\left\langle\mathcal{U}_{1}\right\rangle_{n+1}$ for any $n \geq 1$;
(4) $\operatorname{size}_{\mathcal{A}} \mathcal{U}_{1} \leq \operatorname{size}_{\mathcal{A}} \mathcal{U}_{2}$.

For two subcategories \mathcal{U}, \mathcal{V} of \mathcal{A}, we set $\mathcal{U} \oplus \mathcal{V}=\{U \oplus V \mid U \in \mathcal{U}$ and $V \in \mathcal{V}\}$.
Corollary 2.3 ([12, Corollary 2.3]). For any $T_{1}, T_{2} \in \mathcal{A}$ and $m, n \geq 1$,
(1) $\left\langle T_{1}\right\rangle_{m} \diamond\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{m+n}$;
(2) $\left\langle T_{1}\right\rangle_{m} \oplus\left\langle T_{2}\right\rangle_{n} \subseteq\left\langle T_{1} \oplus T_{2}\right\rangle_{\max \{m, n\}}$.

3. Layer lengths

We recall some notions from [4]. Let \mathcal{C} be a length-category, that is, \mathcal{C} is an abelian, skeletally small category and every object of \mathcal{C} has a finite composition series. We denote by $\operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ the category of all additive functors from \mathcal{C} to \mathcal{C}, and denote by rad the Jacobson radical lying in $\operatorname{End}_{\mathbb{Z}}(\mathcal{C})$. Let $\alpha, \beta \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ and α be a subfunctor of β, we have the quotient functor $\beta / \alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ which is defined as follows.
(1) $(\beta / \alpha)(M):=\beta(M) / \alpha(M)$ for any $M \in \mathcal{C}$;
(2) $(\beta / \alpha)(f)$ is the induced quotient morphism: for any $f \in \operatorname{Hom}_{\mathcal{C}}(M, N)$,

For a subfunctor $\alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ of the identity functor $1_{\mathcal{C}}$ of \mathcal{C}, we write $q_{\alpha}:=$ $1_{\mathcal{C}} / \alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$. For any $\alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$, set the α-radical functor $F_{\alpha}:=\operatorname{rad} \circ \alpha$ and the α-socle quotient functor $G_{\alpha}:=\alpha /(\operatorname{soc} \circ \alpha)$.

Definition 3.1 ([4, Definition 3.1]). For any $\alpha, \beta \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$, we define the (α, β)-layer length $\ell \ell_{\alpha}^{\beta}: \mathcal{C} \longrightarrow \mathbb{N} \cup\{\infty\}$ via $\ell \ell_{\alpha}^{\beta}(M)=\min \left\{i \geq 0 \mid \alpha \circ \beta^{i}(M)=\right.$ $0\}$; and the α-radical layer length $\ell \ell^{\alpha}:=\ell \ell_{\alpha}^{F_{\alpha}}$ and the α-socle layer length $\ell \ell_{\alpha}:=\ell \ell_{\alpha}^{G_{\alpha}}$.

Note that, if $\alpha \in \operatorname{End}_{\mathbb{Z}}(\mathcal{C})$ is either a subfunctor or a quotient functor of $1_{\mathcal{C}}$, then $\ell \ell_{\alpha}(M)$ and $\ell \ell^{\alpha}(M)$ are finite for all M in \mathcal{C}. And the Loewy length is obtained by taking $\alpha=1_{\mathcal{C}}$ in Definition 3.1.

Recall that a torsion pair (or torsion theory) for \mathcal{C} is a pair of classes $(\mathcal{T}, \mathcal{F})$ of objects in \mathcal{C} satisfying the following conditions.
(1) $\operatorname{Hom}_{\mathcal{C}}(M, N)=0$ for any $M \in \mathcal{T}$ and $N \in \mathcal{F}$;
(2) an object $X \in \mathcal{C}$ is in \mathcal{T} if $\left.\operatorname{Hom}_{\mathcal{C}}(X,-)\right|_{\mathcal{F}}=0$;
(3) an object $Y \in \mathcal{C}$ is in \mathcal{F} if $\left.\operatorname{Hom}_{\mathcal{C}}(-, Y)\right|_{\mathcal{T}}=0$.

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair for \mathcal{C}. Recall that $t:=\operatorname{Trace}_{\mathcal{T}}$ is the so called torsion radical attached to $(\mathcal{T}, \mathcal{F})$. Then $t(M):=\Sigma\left\{\operatorname{Im} f \mid f \in \operatorname{Hom}_{\mathcal{C}}(T, M)\right.$ with $T \in \mathcal{T}\}$ is the largest subobject of M lying in \mathcal{T}.

Definition 3.2 ([6]). A class \mathcal{X} in \mathcal{C} is called a ttf-class if there exist classes \mathcal{T} and \mathcal{F} such that $(\mathcal{T}, \mathcal{X})$ and $(\mathcal{X}, \mathcal{F})$ are torsion theories for \mathcal{C}. In this case, the triple $(\mathcal{T}, \mathcal{X}, \mathcal{F})$ is called a ttf-theory.

In the following sections, Λ is an Artin algebra. Then the category $\bmod \Lambda$ of finite generated right Λ-modules is a length-category. We use $\mathcal{S}^{<\infty}$ to denote the set of the simple modules in $\bmod \Lambda$ with finite injective dimension. From now on, assume that \mathcal{S} is a subset of $\mathcal{S}^{<\infty}$ and \mathcal{S}^{\prime} is the set of all others simple modules in $\bmod \Lambda$. We write $\mathfrak{F}(\mathcal{S}):=\{M \in \bmod \Lambda \mid$ there exists a finite chain

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{m}=M
$$

of submodules of M such that each quotient M_{i} / M_{i-1} is isomorphic to some module in $\mathcal{S}\}$.

Lemma 3.3 ([4, Lemma 5.7 and Proposition 5.9]). Let \mathcal{S} be some set of simple objects in $\bmod \Lambda, \mathcal{S}^{\prime}$ be all others simple objects in $\bmod \Lambda$ and $\mathfrak{F}(\mathcal{S})$ be as above. Then $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S}), \mathcal{F}_{\mathcal{S}}\right)$ is a ttf-theory where $\mathcal{T}_{\mathcal{S}}=\left\{M \in \bmod \Lambda \mid\right.$ top $\left.M \in \operatorname{add} \mathcal{S}^{\prime}\right\}$ and $\mathcal{F}_{\mathcal{S}}=\left\{M \in \bmod \Lambda \mid \operatorname{soc} M \in \operatorname{add} \mathcal{S}^{\prime}\right\}$.

By [4, Proposition 5.3], we denote the torsion radical $t_{\mathcal{S}}=\operatorname{Trace}_{\mathcal{T}_{\mathcal{S}}}$ and $\tilde{t_{\mathcal{S}}}=\operatorname{Trace}_{\mathfrak{F}(\mathcal{S})}$. Here $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S}), \mathcal{F}_{\mathcal{S}}\right)$ is a ttf-theory in $\bmod \Lambda$, and we have the following

Proposition 3.4.

(1) The functor $t_{\mathcal{S}}$ preserves monomorphisms and epimorphisms;
(2) The functor $q_{\tilde{t}_{s}}$ preserves monomorphisms and epimorphisms;
(3) The functor $G_{q_{t_{\mathcal{S}}}}$ preserves monomorphisms and epimorphisms.

Proof. (1) Let $f: M \longrightarrow N$ be a monomorphism. Consider the following diagram:

By the commutativity of left square, we get that $t_{\mathcal{S}}(f)$ is a monomorphism. Since $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S}), \mathcal{F}_{\mathcal{S}}\right)$ is a ttf-theory, then $t_{\mathcal{S}}$ is torsion radical and $\mathfrak{F}(\mathcal{S})$ is closed under quotients. By [10, Ch.VI.Ex 5], we get that $t_{\mathcal{S}}$ preserves epimorphisms.
(2) Let $f: M \longrightarrow N$ be an epimorphism. Consider the following diagram:

By the commutativity of right square, we get that $q_{\tilde{t}_{\mathcal{S}}}(f)$ is an epimorphism. Because $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S}), \mathcal{F}_{\mathcal{S}}\right)$ is a ttf-theory, then $\tilde{t_{\mathcal{S}}}$ is torsion radical and $\mathfrak{F}(\mathcal{S})$ is closed under subobjects. Hence $q_{t_{\mathcal{S}}}$ preserves monomorphisms by [4, Lemma 3.7].
(3) The functor $G_{q_{t_{\tilde{\mathcal{S}}}}}$ preserves monomorphisms since $q_{\tilde{t_{\mathcal{S}}}}$ preserves monomorphisms and $G:=1 /$ soc preserves monomorphisms by [4, Section 3].

Let $f: M \longrightarrow N$ be an epimorphism. By (2), $q_{\tilde{\tilde{\mathcal{S}}_{\mathcal{S}}}}(f)$ is an epimorphism. Consider the following diagram:

By the commutativity of right square, we get that $G_{q_{t \tilde{\mathcal{S}}}}(f)$ is an epimorphism.

In the following, we show that the radical layer lengths of Λ and $D \Lambda$ are equal, and the radical layer length of Λ is an upper bound for the radical layer length of $\bmod \Lambda$.

Proposition 3.5. Let Λ be an Artin algebra and \mathcal{S} be some subset of simple objects in $\bmod \Lambda$. Then we have
(1) If $M \in \bmod \Lambda$, then $\ell \ell^{t_{\mathcal{S}}}(M) \leq \ell \ell^{t_{\mathcal{S}}}(\Lambda)$;
(2) $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\ell \ell^{t_{\mathcal{S}}}(D \Lambda)=\ell \ell^{t_{\mathcal{S}}}(\Lambda \oplus D \Lambda)$.

Proof. (1) Since Λ is an Artin algebra and $M \in \bmod \Lambda$, we have an epimorphism $\Lambda^{n} \rightarrow M \rightarrow 0$. We have $\ell \ell^{t_{\mathcal{S}}}(M) \leq \ell \ell^{t_{\mathcal{S}}}(\Lambda)$ by [4, Lemma 3.4].
(2) We only prove that $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$. Since Λ is an Artin algebra and $D \Lambda$ is finite generated as Λ-module, we have an epimorphism $\Lambda^{n} \rightarrow D \Lambda \rightarrow 0$. Due to $t_{\mathcal{S}}$ and rad preserve epimorphisms, we have $\ell \ell^{t_{\mathcal{S}}}(D \Lambda) \leq \ell \ell^{t_{\mathcal{S}}}(\Lambda)$ by $[4$, Lemma 3.4]. Similarly, we have a monomorphism $0 \rightarrow \Lambda \rightarrow(D \Lambda)^{n}$. Due to $t_{\mathcal{S}}$
and rad preserve monomorphisms, we have $\ell \ell^{t_{\mathcal{S}}}(\Lambda) \leq \ell \ell^{t_{\mathcal{S}}}(D \Lambda)$ by [4, Lemma 3.4]. Hence we have $\ell \ell^{t_{s}}(\Lambda)=\ell \ell^{t_{s}}(D \Lambda)$.

Example 3.6. Consider the algebra Λ given by the quiver

with the relation $\beta \alpha=\delta \gamma$. Then the Auslander-Reiten quiver of $\Gamma(\bmod \Lambda)$ is of the form

Let $\mathcal{S}:=\{S(3), S(4)\}$ and $\mathcal{S}^{\prime}=\{S(1), S(2)\}$ in $\bmod \Lambda$. In order to compute $\ell \ell^{t_{\mathcal{S}}}(M)$ for $M \in \bmod \Lambda$, we need to find the smallest non-negative integer j such that $t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{j}(M)=0$. Since top $P(1)=S(1) \in \operatorname{add} \mathcal{S}^{\prime}$, we have $t_{\mathcal{S}}(P(1))=$ $P(1)$ by [4, Proposition 5.9(a)]. Thus

$$
\begin{aligned}
& F_{t_{\mathcal{S}}}(P(1))=\operatorname{rad} t_{\mathcal{S}}(P(1))=\operatorname{rad}(P(1))={ }_{1}^{1}{ }_{1}{ }_{0} \\
& F_{t_{\mathcal{S}}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)={ }_{0}^{0}{ }_{0} 0_{0}, t_{\mathcal{S}} F_{t_{\mathcal{S}}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)=0 .
\end{aligned}
$$

Hence $l \ell^{t_{\mathcal{S}}}(P(1))=2$. Similarly, we have

$$
\ell \ell^{t_{\mathcal{S}}}(P(i))=\left\{\begin{array}{ll}
2, & \text { if } i=1 ; \\
1, & \text { if } i=2 ; \\
0, & \text { if } i=3,4 ;
\end{array} \quad \quad \ell^{t_{\mathcal{S}}}(I(i))= \begin{cases}1, & \text { if } i=1,3 \\
2, & \text { if } i=2,4\end{cases}\right.
$$

Because $\Lambda=\oplus_{i=1}^{4} P(i)$ and $D \Lambda=\oplus_{i=1}^{4} I(i)$, we have

$$
\begin{aligned}
& \ell \ell^{t_{\mathcal{S}}}(\Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(P(i)) \mid 1 \leq i \leq 4\right\}=2 \\
& \ell \ell^{t_{\mathcal{S}}}(D \Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(I(i)) \mid 1 \leq i \leq 4\right\}=2
\end{aligned}
$$

by $[4$, Lemma $3.4(\mathrm{a})]$. Hence $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$. Similarly, we have

Hence we have $\ell \ell^{t} \mathcal{S}(M) \leq \ell \ell^{t} \mathcal{S}(\Lambda)=\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$ for $M \in \bmod \Lambda$.

4. Dimension of module categories

Let $X \in \bmod \Lambda$. If there exists a monomorphism $f: X \longrightarrow E$ in $\bmod \Lambda$ such that E is an injective envelope of X, then we write $\Omega^{-1}(X)=$: Coker f. Dually, if there exists an epimorphism $g: P \longrightarrow X$ in $\bmod \Lambda$ such that P is a projective cover of X, then we write $\Omega^{1}(X)=$: Ker g. Inductively, for any $n \geq 2$, we write $\Omega^{n}(X):=\Omega^{1}\left(\Omega^{n-1}(X)\right)$ and $\Omega^{-n}(X):=\Omega^{-1}\left(\Omega^{-(n-1)}(X)\right)$.

Proposition 4.1. Let \mathcal{S} be some subset of simple objects in $\bmod \Lambda$ and $M \in$ $\bmod \Lambda$. If $q_{t_{\mathcal{S}}}(M) \neq 0$, then $\ell \ell_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1} q_{t_{\mathcal{S}}}(M)\right) \leq \ell \ell^{t_{\mathcal{S}}}(D \Lambda)-1$.

Proof. Assume that $q_{t_{\mathcal{S}}}(M) \neq 0$. Consider the following exact sequence

$$
0 \longrightarrow q_{t_{\mathcal{S}}}(M) \longrightarrow I \longrightarrow \Omega^{-1} q_{t_{\tilde{S}_{\mathcal{S}}}}(M) \longrightarrow 0
$$

where I is the injective envelope of $q_{t_{\mathcal{S}}}(M)$. Hence we have $\operatorname{soc} I \subseteq q_{t_{\mathcal{S}}}(M)$. So we have an exact sequence $0 \rightarrow q_{t_{\mathcal{S}}}(M) / \operatorname{soc} I \rightarrow I / \operatorname{soc} I \rightarrow \Omega^{-1} q_{t_{\mathcal{S}}}(M) \rightarrow 0$. Since $q_{t_{\tilde{\mathcal{S}}}}$ and $G_{q_{t_{\tilde{\mathcal{S}}}}}$ preserve epimorphisms, we have

$$
\ell \ell_{q_{t_{\overline{\mathcal{S}}}}}\left(\Omega^{-1} q_{t_{t_{\mathcal{S}}}}(M)\right) \leq \ell \ell_{q_{t_{\mathcal{S}}}}(I / \operatorname{soc} I)
$$

by [4, Lemma 3.4]. Since $\operatorname{soc} I \subseteq q_{t_{\mathcal{S}}}(M)$, soc $I \in \operatorname{add} \mathcal{S}^{\prime}$. Hence top $\operatorname{soc} I \in$ add \mathcal{S}^{\prime} and $\operatorname{soc} I \in \mathcal{T}_{\mathcal{S}}$ by [4, Proposition 5.9]. By [4, Corollary 5.6 and Proposition 4.1], $\ell \ell_{q_{t_{\mathcal{S}}}}(I / \operatorname{soc} I)=\ell \ell^{t_{\mathcal{S}}}(I / \operatorname{soc} I)=\ell \ell^{t_{\mathcal{S}}}(I)-1 \leq \ell \ell^{t_{\mathcal{S}}}(D \Lambda)-1$.

Lemma 4.2. Let \mathcal{S} be a subset of the set $\mathcal{S}^{<\infty}$ of the simple modules in $\bmod \Lambda$ with finite injective dimension. If $q_{t_{\mathcal{S}}}(M) \neq 0$ and $\operatorname{id} \mathcal{S}=\alpha$, then we have an isomorphism

$$
\Omega^{\alpha+2}\left(\Omega^{-(\alpha+2)}(M)\right) \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right)
$$

and an exact sequence

$$
\begin{aligned}
& 0 \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\mathcal{S}}}}^{i-1}\left(\Omega^{-1}\left(q_{t_{\overline{\mathcal{S}}}}(M)\right)\right)\right)\right) \rightarrow \\
& \Omega^{\alpha+2}\left(\Omega ^ { - (\alpha + 1) } \left(q_{\tilde{t_{\mathcal{S}}}} G_{\left.\left.q_{q_{\tilde{\mathcal{S}}}}^{i-1}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{i}\right) \oplus P_{i} \rightarrow} \quad \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}}^{i}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \rightarrow 0\right.\right.
\end{aligned}
$$

for any $1 \leq i \leq n-2$. Moreover, we have isomorphisms
$\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}^{i}}^{i}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right)\right) \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}^{i}}^{i}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right)\right)$
for any $1 \leq i \leq n-2$, and

$$
\begin{aligned}
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{\mathcal{S}_{\mathcal{S}}}} G_{q_{t_{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{n-1}\right) \\
\cong & \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) .
\end{aligned}
$$

Proof. We have the following exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \tilde{t_{\mathcal{S}}}(M) \rightarrow M \rightarrow q_{t_{\mathcal{S}}}(M) \rightarrow 0, \\
& 0 \rightarrow \tilde{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right) \rightarrow \Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right) \rightarrow q_{\tilde{t}_{\tilde{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right) \rightarrow 0, \\
& 0 \rightarrow \operatorname{soc} q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right) \rightarrow q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right) \rightarrow G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right) \rightarrow 0, \\
& 0 \rightarrow \tilde{t_{\mathcal{S}}} G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right) \rightarrow G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right) \\
& \rightarrow q_{t_{\tilde{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right) \rightarrow 0, \\
& 0 \rightarrow \operatorname{soc} q_{t_{t_{\mathcal{S}}}} G_{q_{t_{\overline{\mathcal{S}}}^{-\tilde{s}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}_{\mathcal{S}}}}(M)\right)\right) \rightarrow q_{t_{\tilde{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right) \\
& \rightarrow G_{q_{t_{\mathcal{S}}}}^{2}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right) \rightarrow 0, \\
& 0 \rightarrow \tilde{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right) \rightarrow G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right) \\
& \rightarrow q_{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right) \rightarrow 0, \\
& 0 \rightarrow \operatorname{soc} q_{t_{\overline{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}_{\mathcal{S}}}}(M)\right)\right) \rightarrow q_{t_{\overline{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}_{\mathcal{S}}}}(M)\right)\right) \\
& \rightarrow G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-1}\left(\Omega^{-1}\left(q_{\tau_{\tilde{\mathcal{S}}}}(M)\right)\right) \rightarrow 0 .
\end{aligned}
$$

By Proposition 4.1, $\ell \ell_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1} q_{t_{\tilde{\mathcal{S}}}}(M)\right) \leq \ell \ell^{t_{\mathcal{S}}}(D \Lambda)-1=n-1$. Hence

$$
q_{\tilde{t}_{\tilde{\mathcal{S}}}}\left(G_{q_{t_{\mathcal{S}}}}^{n-1}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right)=0
$$

Then by [4, Proposition 5.3], we have id $G_{q_{t_{\mathcal{S}}}}^{n-1}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right) \leq \alpha$. We have the following:

$$
\begin{aligned}
& \Omega^{-(\alpha+2)}(M) \cong \Omega^{-(\alpha+2)}\left(q_{t_{\mathcal{S}}}(M)\right), \\
& \Omega^{-(\alpha+2)}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)=\Omega^{-(\alpha+1)}\left(\Omega^{-1} q_{\tilde{t}_{\mathcal{S}}}(M)\right) \cong \Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right), \\
& 0 \rightarrow \Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right) \rightarrow \Omega^{-(\alpha+1)}\left(q_{\tilde{\mathcal{S}}_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right) \oplus I_{1} \\
& \rightarrow \Omega^{-(\alpha+1)}\left(G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \rightarrow 0, \text { (exact) } \\
& \Omega^{-(\alpha+1)}\left(G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \cong \Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}} G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right), \\
& 0 \rightarrow \Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t}_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\overline{\mathcal{S}}}}(M)\right)\right)\right) \\
& \rightarrow \Omega^{-(\alpha+1)}\left(q_{\tilde{t}_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \oplus I_{2} \\
& \rightarrow \Omega^{-(\alpha+1)}\left(G_{q_{t_{\mathcal{S}}}}^{2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \rightarrow 0, \quad \text { (exact) }
\end{aligned}
$$

$$
\begin{aligned}
& \Omega^{-(\alpha+1)}\left(G_{q_{t_{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \cong \Omega^{-(\alpha+1)}\left(q_{t_{\tilde{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right)\right), \\
& \quad \Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \oplus I_{n-1} \\
& \cong \Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right),
\end{aligned}
$$

where all I_{i} are injective in $\bmod \Lambda$; we also have the following

$$
\begin{aligned}
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+2)}(M)\right) \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\Omega^{-1} q_{t_{\mathcal{S}}}(M)\right)\right) \\
& =\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tau_{\tilde{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{\tilde{\mathcal{S}_{\mathcal{S}}}}(M)\right)\right)\right),\right. \\
& 0 \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t}_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \\
& \rightarrow \Omega^{(\alpha+2)}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{1}\right) \oplus P_{1} \\
& \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right)\right)\right) \rightarrow 0, \text { (exact) } \\
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right)\right) \\
& \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\tilde{\mathcal{S}}}}}\left(\Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right),\right. \\
& 0 \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \\
& \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{2}\right) \oplus P_{2} \\
& \rightarrow \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{S}}}}^{2}\left(\Omega^{-1}\left(q_{t_{\tilde{\mathcal{S}}}}(M)\right)\right)\right)\right) \rightarrow 0, \text { (exact) } \\
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}^{n-2}}^{n}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \\
& \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}} G_{q_{t_{\tilde{\mathcal{S}}}}}^{n-2}\left(\Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right),\right. \\
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{\mathcal{S}}_{\mathcal{S}}} G_{q_{\tilde{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{\tilde{t}_{\tilde{\mathcal{S}}}}(M)\right)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{n-1}\right) \\
& \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t_{\mathcal{S}}}} G_{q_{t_{\mathcal{S}}}}^{n-2}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right),
\end{aligned}
$$

where all P_{i} are projective in $\bmod \Lambda$.
In the following, we will show that the sum of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of $D \Lambda$ provides an upper bound for the extension dimension of $\bmod \Lambda$.

Theorem 4.3. Let \mathcal{S} be a subset of the set $\mathcal{S}^{<\infty}$ of the simple modules in $\bmod \Lambda$ with finite injective dimension. Then $\operatorname{dim} \bmod \Lambda \leq i d \mathcal{S}+\ell \ell^{t} \mathcal{S}(D \Lambda)$ where $\operatorname{id} \mathcal{S}=\sup \{\operatorname{id} M \mid M \in \mathcal{S}\}$ with $\mathcal{S} \neq \emptyset ; \operatorname{id} \mathcal{S}=-1$ with $\mathcal{S}=\emptyset$.

Proof. Let $\ell \ell^{t} \mathcal{S}(D \Lambda)=n$ and id $\mathcal{S}=\alpha$.
If $n=0$, that is, $t_{\mathcal{S}}(D \Lambda)=0$, then $D \Lambda \in \mathfrak{F}(\mathcal{S})$, which implies that \mathcal{S} is the set of all simple modules. Thus $\mathcal{S}=\mathcal{S}^{<\infty}$ and $\operatorname{gl} \operatorname{dim} \Lambda=\alpha$. So the assertion follows from [12, Corollary 3.6].

Now let $n \geq 1$ and $M \in \bmod \Lambda$. Consider the following exact sequence

$$
0 \longrightarrow M \longrightarrow E_{0} \longrightarrow E_{1} \longrightarrow \cdots \longrightarrow E_{\alpha+1} \longrightarrow \Omega^{-(\alpha+2)}(M) \longrightarrow 0
$$

in $\bmod \Lambda$ with all E_{i} injective. By [3, Lemma 5.8],

$$
M \in\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+2)}(M)\right)\right\rangle_{1} \diamond\left\langle\oplus_{i=0}^{\alpha+1} \Omega^{i}(D \Lambda)\right\rangle_{\alpha+2}
$$

By Lemma 4.2 we have

$$
\begin{aligned}
& \Omega^{\alpha+2}\left(\Omega^{-(\alpha+2)}(M)\right) \\
& \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right) \\
& \cong \Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right) \\
& \in\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{t_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right)\right\rangle_{1} \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{S}}}} \Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& =\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{\mathcal{S}}_{\mathcal{S}}}\left(\Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1}\right. \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}} \Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}} G_{q_{q_{\tilde{\mathcal{S}}}}} \Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{\tilde{t}_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}} \Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t_{\tilde{\mathcal{S}}}}^{2}}^{2} \Omega^{-1}\left(q_{\tilde{t}_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(G_{q_{t \tilde{\mathcal{S}}}}^{2} \Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq \underbrace{\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \diamond \cdots \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1}}_{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& \diamond\left\langle\Omega ^ { \alpha + 2 } \left(\Omega ^ { - (\alpha + 1) } \left(q_{\tilde{t_{\mathcal{S}}}} G_{\left.\left.\left.q_{t_{\tilde{\mathcal{S}}}}^{n-2} \Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right)\right\rangle_{1}, ~(\Omega+1)}\right.\right.\right. \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(q_{\tilde{t_{\mathcal{S}}}} G_{q_{\tilde{\mathcal{S}}}}^{n-2} \Omega^{-1}\left(q_{\tilde{t_{\mathcal{S}}}}(M)\right)\right)\right) \oplus \Omega^{\alpha+2}\left(I_{n-1}\right)\right\rangle_{1} \\
& =\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \\
& \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}\left(\operatorname{soc} q_{t_{\mathcal{S}}} G_{q_{t_{\mathcal{S}}}}^{n-2} \Omega^{-1}\left(q_{t_{\mathcal{S}}}(M)\right)\right)\right)\right\rangle_{1} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-2} \diamond\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{1} \\
& =\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-1} \text {, }
\end{aligned}
$$

and hence

$$
\begin{aligned}
M & \in\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+2)}(M)\right)\right\rangle_{1} \diamond\left\langle\oplus_{i=0}^{\alpha+1} \Omega^{i}(D \Lambda)\right\rangle_{\alpha+2} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right)\right\rangle_{n-1} \diamond\left\langle\oplus_{i=0}^{\alpha+1} \Omega^{i}(D \Lambda)\right\rangle_{\alpha+2} \\
& \subseteq\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right) \oplus\left(\oplus_{i=0}^{\alpha+1} \Omega^{i}(D \Lambda)\right)\right\rangle_{\alpha+1+n} .(\text { by Corollary 2.3(1)) }
\end{aligned}
$$

It follows that

$$
\bmod \Lambda=\left\langle\Omega^{\alpha+2}\left(\Omega^{-(\alpha+1)}(\Lambda / \operatorname{rad} \Lambda)\right) \oplus\left(\oplus_{i=0}^{\alpha+1} \Omega^{i}(D \Lambda)\right)\right\rangle_{\alpha+1+n}
$$

and $\operatorname{dim} \Lambda \leq \alpha+n$.
Corollary 4.4. Let \mathcal{S} be a subset of the set of the simple modules with finite projective dimension and finite injective dimension in $\bmod \Lambda$. Then

$$
\operatorname{dim} \bmod \Lambda \leq \min \{\operatorname{id} \mathcal{S}, \operatorname{pd} \mathcal{S}\}+\ell \ell^{t_{\mathcal{S}}}(D \Lambda)
$$

Proof. It is a direct consequence of Theorem 4.3, [12, Theorem 3.19], and Proposition 3.5(2).

Corollary 4.5 .

(1) $([1$, Example $1.6(\mathrm{ii})]) \operatorname{dim} \bmod \Lambda \leq \mathrm{LL}(D \Lambda)-1=\mathrm{LL}(\Lambda)-1$;
(2) $([12$, Corollary 3.6$]$ and $[5,4.5 .1(3)]) \operatorname{dim} \bmod \Lambda \leq \operatorname{gl} \cdot \operatorname{dim} \Lambda$.

Proof. (1) Let $\mathcal{S}=\emptyset$. Then id $\mathcal{S}=-1$ and the torsion pair $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S})\right)=$ $(\bmod \Lambda, 0)$. By [4, Proposition 5.9(a)], we have $t_{\mathcal{S}}(D \Lambda)=D \Lambda$ and $\ell \ell^{t_{\mathcal{S}}}(D \Lambda)=$ $\mathrm{LL}(D \Lambda)$. It follows from Theorem 4.3 that $\operatorname{dim} \bmod \Lambda \leq \operatorname{LL}(D \Lambda)-1=\operatorname{LL}(\Lambda)-$ 1.
(2) Let $\mathcal{S}=\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Then id $\mathcal{S}=\operatorname{gl} \cdot \operatorname{dim} \Lambda$ and the torsion pair $\left(\mathcal{T}_{\mathcal{S}}, \mathfrak{F}(\mathcal{S})\right)=(0, \bmod \Lambda)$. By [4, Proposition 5.3], we have $t_{\mathcal{S}}(D \Lambda)=0$ and $\ell \ell^{t_{\mathcal{S}}}(D \Lambda)=0$. It follows from Theorem 4.3 that $\operatorname{dim} \bmod \Lambda \leq$ gl. $\operatorname{dim} \Lambda$.

5. Examples

Now we give examples to show that there is no necessary relationship between $\operatorname{id} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(D \Lambda)$ and $\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)$. The following first example shows that $\operatorname{dim} \bmod \Lambda \leq \operatorname{id} \mathcal{S}+\ell \ell^{t} \mathcal{S}(D \Lambda)=\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)$.

Example 5.1. Consider the bound quiver algebra $\Lambda=k Q / I$, where k is a field and Q is given by

and I is generated by $\left\{\alpha_{2 n} \alpha_{2 n+1} ; \omega_{i}\right.$ for $\left.1 \leq i \leq n-1\right\}$ where $\omega_{1}=\alpha_{2 n+1} \alpha_{2 n+2}$ $\cdots \alpha_{2 n+n} ; \omega_{i}=\alpha_{2 n+i} \alpha_{2 n+i+1} \alpha_{2 n+i+2} \cdots \alpha_{2 n+i-1} \alpha_{2 n+i}$ for $2 \leq i \leq n-1$. Then the indecomposable projective Λ-modules are

where $2 \leq j \leq 2 n, 2 \leq i \leq n$. Then the indecomposable injective Λ-modules are

$$
\begin{array}{ccc}
1 & 2 n+2 & 2 n+i \\
\downarrow & \downarrow & \downarrow \\
2 & 2 n+3 & 2 n+i+1 \\
\downarrow(j)= & \downarrow & \downarrow \\
\downarrow & I(2 n+1)= & 2 n+4 \\
\downarrow & \downarrow & I(2 n+i)= \\
\vdots & \vdots & 1 \\
& \downarrow & \downarrow+i+2 \\
& \downarrow & \downarrow \\
& 2 n+1 & \vdots \\
j & & \downarrow \\
& & 2 n+i-1 \\
& & \downarrow \\
& & 2 n+i
\end{array}
$$

where $1 \leq j \leq 2 n, 2 \leq i \leq n$.
We have

$$
\begin{aligned}
& \operatorname{pd} S(i)= \begin{cases}2 n-1, & \text { if } i=1 \\
1, & \text { if } 2 \leq i \leq 2 n-1 ; \\
0, & \text { if } i=2 n ; \\
2 j+1, & \text { if } i=2 n+n-j \text { for } 0 \leq j<n-1 ; \\
2 n-2, & \text { if } i=2 n+1 ;\end{cases} \\
& \operatorname{id} S(i)= \begin{cases}0, & \text { if } i=1 ; \\
1, & \text { if } 2 \leq i \leq 2 n ; \\
2 n-1, & \text { if } i=2 n+1 ; \\
2 j-2, & \text { if } i=2 n+j \text { for } 2 \leq j \leq n .\end{cases}
\end{aligned}
$$

Hence $\operatorname{LL}(\Lambda)=2 n$ and $\operatorname{gl} \cdot \operatorname{dim} \Lambda=2 n-1$. So $\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Let $\mathcal{S}:=\{S(i) \mid 2 \leq i \leq 2 n\}\left(\subseteq \mathcal{S}^{<\infty}\right)$ and \mathcal{S}^{\prime} be all the others simple modules in $\bmod \Lambda$. Then $\operatorname{pd} \mathcal{S}=1=\mathrm{id} \mathcal{S}$ and $\mathcal{S}^{\prime}=\{S(i) \mid i=1$ or $2 n+1 \leq$
$i \leq 2 n+n\}$. Because $\Lambda=\oplus_{i=1}^{3 n} P(i)$, we have $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(P(i)) \mid 1 \leq\right.$ $i \leq 3 n\}$ by [4, Lemma 3.4(a)].

In order to compute $\ell \ell^{t_{\mathcal{S}}}(P(i))$, we need to find the smallest non-negative integer j such that $t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{j}(P(i))=0$. Since top $P(1)=S(1) \in \operatorname{add} \mathcal{S}^{\prime}$, we have $t_{\mathcal{S}}(P(1))=P(1)$ by [4, Proposition 5.9(a)]. Thus

$$
F_{t_{\mathcal{S}}}(P(1))=\operatorname{rad} t_{\mathcal{S}}(P(1))=\operatorname{rad}(P(1))=S(2 n+1) \oplus P(2) .
$$

Since top $S(2 n+1)=S(2 n+1) \in \operatorname{add} \mathcal{S}^{\prime}$, we have $t_{\mathcal{S}}(S(2 n+1))=S(2 n+1)$ by [4, Proposition 5.9(a)]. Since $P(2) \in \mathfrak{F}(\mathcal{S})$, we have $t_{\mathcal{S}}(P(2))=0$ by [4, Proposition 5.3]. So

$$
t_{\mathcal{S}} F_{t_{\mathcal{S}}}(P(1))=t_{\mathcal{S}}(S(2 n+1) \oplus P(2))=S(2 n+1)
$$

It follows that

$$
F_{t_{\mathcal{S}}}^{2}(P(1))=\operatorname{rad} t_{\mathcal{S}} F_{t_{\mathcal{S}}}(P(1))=\operatorname{rad}(S(n+1))=0
$$

and $t_{\mathcal{S}} F_{t_{\mathcal{S}}}^{2}(P(1))=0$, which implies $\ell \ell^{t_{\mathcal{S}}}(P(1))=2$. Similarly, we have

$$
\begin{aligned}
& \ell \ell^{t_{\mathcal{S}}}(P(i))= \begin{cases}0, & \text { if } 2 \leq i \leq 2 n \\
2, & \text { if } i=1 \\
n, & \text { if } i=2 n+1 \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n\end{cases} \\
& \ell \ell^{t_{\mathcal{S}}}(I(i))= \begin{cases}1, & \text { if } 1 \leq i \leq 2 n \\
n, & \text { if } i=2 n+1 \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n\end{cases}
\end{aligned}
$$

Consequently, we conclude that $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(P(i)) \mid 1 \leq i \leq 3 n\right\}=$ $n+1=\ell \ell^{t_{\mathcal{S}}}(D \Lambda) . \operatorname{dim} \bmod \Lambda \leq \operatorname{id} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+2$.

The following example shows that $\operatorname{dim} \bmod \Lambda \leq \operatorname{pd} \mathcal{S}+\ell \ell^{t} \mathcal{S}(\Lambda)=n+2<$ id $\mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(D \Lambda)=n+3$.

Example 5.2. Consider the bound quiver algebra $\Lambda=k Q / I$, where k is a field and Q is given by

and I is generated by $\left\{\beta \alpha ; \alpha_{2 n} \alpha_{2 n+1} ; \omega_{i}\right.$ for $\left.1 \leq i \leq n-1\right\}$ where $\omega_{1}=$ $\alpha_{2 n+1} \alpha_{2 n+2} \cdots \alpha_{2 n+n} ; \omega_{i}=\alpha_{2 n+i} \alpha_{2 n+i+1} \alpha_{2 n+i+2} \cdots \alpha_{2 n+i-1} \alpha_{2 n+i}$ for $2 \leq i \leq$
$n-1$. Then the indecomposable projective Λ-modules are

$$
P(x)=\begin{gathered}
x \\
\downarrow \\
2 n
\end{gathered} \quad P(y)=\stackrel{y}{\downarrow} \begin{aligned}
& y \\
& x
\end{aligned}
$$

where $2 \leq j \leq 2 n, 2 \leq i \leq n$. Then the indecomposable injective Λ-modules are

$$
I(x)=\stackrel{y}{\downarrow} \begin{aligned}
& y \\
& x
\end{aligned} \quad I(y)=y
$$

where $1 \leq j \leq 2 n-1,2 \leq i \leq n$.
We have

$$
\operatorname{pd} S(i)= \begin{cases}2 n-1, & \text { if } i=1 ; \\ 1, & \text { if } 2 \leq i \leq 2 n-1 \text { or } i=x \\ 0, & \text { if } i=2 n \\ 2, & \text { if } i=y ; \\ 2 j+1, & \text { if } i=2 n+n-j \text { for } 0 \leq j<n-1 ; \\ 2 n-2, & \text { if } i=2 n+1 ;\end{cases}
$$

$$
\operatorname{id} S(i)= \begin{cases}0, & \text { if } i=1 \text { or } y \\ 1, & \text { if } 2 \leq i \leq 2 n-1 \text { or } i=x \\ 2, & \text { if } i=2 n \\ 2 n-1, & \text { if } i=2 n+1 \\ 2 j-2, & \text { if } i=2 n+j \text { for } 2 \leq j \leq n\end{cases}
$$

Hence $\operatorname{LL}(\Lambda)=2 n$ and $\operatorname{gl.dim} \Lambda=2 n-1$. So $\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Let $\mathcal{S}:=\{S(i) \mid 2 \leq i \leq 2 n\}\left(\subseteq \mathcal{S}^{<\infty}\right)$ and \mathcal{S}^{\prime} be all the others simple modules in $\bmod \Lambda$. Then $\operatorname{pd} \mathcal{S}=1$, id $\mathcal{S}=2$ and $\mathcal{S}^{\prime}=\{S(i) \mid i=$ $1 ; x ; y ; 2 n+1 \leq i \leq 2 n+n\}$.

Similarly as above, we have

$$
\begin{aligned}
& \ell \ell^{t_{\mathcal{S}}}(P(i))= \begin{cases}0, & \text { if } 2 \leq i \leq 2 n \\
1, & \text { if } i=x \\
2, & \text { if } i=1, \text { or } i=y \\
n, & \text { if } i=2 n+1 \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n\end{cases} \\
& \ell \ell^{t_{\mathcal{S}}}(I(i))= \begin{cases}1, & \text { if } 1 \leq i \leq 2 n, \text { or } i=y \\
2, & \text { if } i=x \\
n, & \text { if } i=2 n+1 \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n\end{cases}
\end{aligned}
$$

Consequently, we conclude that $\ell \ell^{t_{s}}(\Lambda)=\max \left\{\ell \ell^{t_{s}}(P(i)) \mid 1 \leq i \leq 3 n\right\}=$ $n+1=\ell \ell^{t_{\mathcal{S}}}(D \Lambda) . \operatorname{dim} \bmod \Lambda \leq \operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+2<\operatorname{id} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+3$.

The following example shows that $\operatorname{dim} \bmod \Lambda \leq \operatorname{id} \mathcal{S}+\ell \ell^{t} \mathcal{S}(D \Lambda)=n+2<$ $\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+3$.

Example 5.3. Consider the bound quiver algebra $\Lambda=k Q / I$, where k is a field and Q is given by

and I is generated by $\left\{\alpha_{2 n-1} \alpha ; \alpha_{2 n} \alpha_{2 n+1} ; \omega_{i}\right.$ for $\left.1 \leq i \leq n-1\right\}$ where $\omega_{1}=$ $\alpha_{2 n+1} \alpha_{2 n+2} \cdots \alpha_{2 n+n} ; \omega_{i}=\alpha_{2 n+i} \alpha_{2 n+i+1} \alpha_{2 n+i+2} \cdots \alpha_{2 n+i-1} \alpha_{2 n+i}$ for $2 \leq i \leq$
$n-1$. Then the indecomposable projective Λ-modules are

$$
P(2 n)=\stackrel{{ }_{x}^{2 n}}{x} \quad P(x)=x
$$

where $2 \leq j \leq 2 n-1,2 \leq i \leq n$. Then the indecomposable injective Λ-modules are
where $1 \leq j \leq 2 n, 2 \leq i \leq n$.
We have

$$
\begin{aligned}
& \operatorname{pd} S(i)= \begin{cases}2 n-1, & \text { if } i=1 ; \\
1, & \text { if } 2 \leq i<2 n-1 \text { or } i=2 n ; \\
0, & \text { if } i=x ; \\
2, & \text { if } i=2 n-1 ; \\
2 j+1, & \text { if } i=2 n+n-j \text { for } 0 \leq j<n-1 ; \\
2 n-2, & \text { if } i=2 n+1 ;\end{cases} \\
& \operatorname{id} S(i)= \begin{cases}0, & \text { if } i=1 ; \\
1, & \text { if } 2 \leq i \leq 2 n ; \\
2, & \text { if } i=x ; \\
2 n-1, & \text { if } i=2 n+1 ; \\
2 j-2, & \text { if } i=2 n+j \text { for } 2 \leq j \leq n .\end{cases}
\end{aligned}
$$

Hence $\operatorname{LL}(\Lambda)=2 n$ and gl.dim $\Lambda=2 n-1$. So $\mathcal{S}^{<\infty}=\{$ all simple modules in $\bmod \Lambda\}$. Let $\mathcal{S}:=\{S(i) \mid 2 \leq i \leq 2 n\}\left(\subseteq \mathcal{S}^{<\infty}\right)$ and \mathcal{S}^{\prime} be all the others simple modules in $\bmod \Lambda$. Then $\operatorname{pd} \mathcal{S}=2$, id $\mathcal{S}=1$ and $\mathcal{S}^{\prime}=\{S(i) \mid i=1 ; x ; 2 n+1 \leq$ $i \leq 2 n+n\}$.

Similarly as above, we have

$$
\begin{aligned}
& \ell \ell^{t_{\mathcal{S}}}(P(i))= \begin{cases}0, & \text { if } 2 \leq i<2 n ; \\
1, & \text { if } i=x ; \text { or } i=2 n ; \\
2, & \text { if } i=1 ; \\
n, & \text { if } i=2 n+1 ; \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n ;\end{cases} \\
& \ell \ell^{t_{\mathcal{S}}}(I(i))= \begin{cases}1, & \text { if } 1 \leq i \leq 2 n ; \text { or } i=x ; \\
n, & \text { if } i=2 n+1 ; \\
n+1, & \text { if } 2 n+2 \leq i \leq 2 n+n .\end{cases}
\end{aligned}
$$

Consequently, we conclude that $\ell \ell^{t_{\mathcal{S}}}(\Lambda)=\max \left\{\ell \ell^{t_{\mathcal{S}}}(P(i)) \mid 1 \leq i \leq 3 n\right\}=$ $n+1=\ell \ell^{t_{\mathcal{S}}}(D \Lambda), \operatorname{dim} \bmod \Lambda \leq \operatorname{id} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+2<\operatorname{pd} \mathcal{S}+\ell \ell^{t_{\mathcal{S}}}(\Lambda)=n+3$.

Acknowledgement. The authors thank Professor Zhaoyong Huang for his supervision and continuous encouragement.

References

[1] A. Beligiannis, Some ghost lemmas, survey for 'The representation dimension of Artin algebras', Bielefeld 2008; http://www.mathematik.uni-bielefeld.de/~sek/2008/ ghosts.pdf.
[2] A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36, 258. https://doi.org/10.17323/1609-4514-2003-3-1-1-36
[3] H. Dao and R. Takahashi, The radius of a subcategory of modules, Algebra Number Theory 8 (2014), no. 1, 141-172. https://doi.org/10.2140/ant.2014.8.141
[4] F. Huard, M. Lanzilotta, and O. Mendoza Hernández, Layer lengths, torsion theories and the finitistic dimension, Appl. Categ. Structures 21 (2013), no. 4, 379-392. https: //doi.org/10.1007/s10485-011-9268-x
[5] O. Iyama, Rejective subcategories of Artin algebras and orders, arXiv:math/0311281, 2003.
[6] J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259. http:// projecteuclid.org/euclid.pjm/1102995279
[7] S. Oppermann, Lower bounds for Auslander's representation dimension, Duke Math. J. 148 (2009), no. 2, 211-249. https://doi.org/10.1215/00127094-2009-025
[8] R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357-367. https://doi.org/10.1007/s00222-006-0499-7
[9] , Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193-256. https://doi.org/10.1017/is007011012jkt010
[10] B. Stenström, Rings of Quotients, Springer-Verlag, New York, 1975.
[11] J. Wei, Finitistic dimension and Igusa-Todorov algebras, Adv. Math. 222 (2009), no. 6, 2215-2226. https://doi.org/10.1016/j.aim.2009.07.008
[12] J. Zheng, X. Ma, and Z. Huang, The extension dimension of abelian categories, Algebr. Represent. Theor. (2019); https://doi.org/10.1007/s10468-019-09861-z

Yeyang Peng
Department of Mathematics
Nanjing University
Nanjing 210093, P. R. China
Tiwei Zhao
School of Mathematical Sciences
Qufu Normal University
Qufu 273165, P. R. China
Email address: tiweizhao@qfnu.edu.cn

[^0]: Received October 8, 2019; Accepted March 5, 2020.
 2010 Mathematics Subject Classification. Primary 18G20, 16E10, 18E10.
 Key words and phrases. Extension dimension, radical layer length, module categories. This work was financially supported by NSFC $(11971225,11901341)$ and the NSF of Shandong Province (ZR2019QA015).

