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ON THE EXTENSION DIMENSION OF

MODULE CATEGORIES

Yeyang Peng and Tiwei Zhao

Abstract. Let Λ be an Artin algebra and mod Λ the category of finitely

generated right Λ-modules. We prove that the radical layer length of Λ is
an upper bound for the radical layer length of mod Λ. We give an upper

bound for the extension dimension of mod Λ in terms of the injective
dimension of a certain class of simple right Λ-modules and the radical

layer length of DΛ.

1. Introduction

The dimension of triangulated categories was studied in [2, 9], which mea-
sures how quickly the category can be built from one object. This dimension
can be used to compute the representation dimension of Artin algebras [7,8,11].
Rouquier proved in [9] that the dimension of the bounded derived category of
mod Λ is at most min{gl.dim Λ,LL(Λ)− 1}, where gl.dim Λ and LL(Λ) are the
global dimension and the Loewy length of an Artin algebra Λ, respectively.

Let A be an abelian category having enough projective objects and enough
injective objects. As an analogue of the dimension of triangulated categories,
the (extension) dimension dimA of an abelian category A was introduced by
Beligiannis in [1], also see [3]. Let Λ be an Artin algebra. The extension di-
mension dim mod Λ is also an invariant that measures how far Λ is from having
finite representation type. Thus it is an important and meaningful work to look
for a suitable upper bound for the extension dimension. It was proved in [1]
that dim mod Λ ≤ LL(Λ)−1. Zheng, Ma and Huang also gave an upper bound
for the extension dimension of mod Λ in terms of the projective dimension of
a certain class of simple right Λ-modules and the radical layer length of Λ in
[12]. Based on these works, in this paper we will study further properties of the
extension dimension of mod Λ in terms of the injective dimension of a certain
class of simple right Λ-modules and the radical layer length of Λ, and will give
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a smaller upper bound for the extension dimension of mod Λ which is better
than LL(Λ)− 1 and gl.dim Λ. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results.
Let Λ be an Artin algebra and mod Λ the category of finitely generated right

Λ-modules. In Section 3, we investigate the radical layer length of modules,
and get that the radical layer lengths of Λ and DΛ are equal. We also prove
that the radical layer length of Λ is an upper bound for the radical layer length
of mod Λ. In Section 4, we give an upper bound for the extension dimension
of mod Λ in terms of the injective dimension of a certain class of simple right
Λ-modules and the radical layer length of DΛ, that is,

Theorem 1.1 (Corollary 4.4). Let S be a subset of the set of the simple modules
with finite projective dimension and finite injective dimension in mod Λ. Then
dim mod Λ ≤ min{idS,pdS}+ ``tS (DΛ).

In Section 5, we give examples to show that there is no necessary relationship
between idS +``tS (DΛ) and pdS +``tS (Λ).

2. Preliminaries

Let A be an abelian category. All subcategories of A are full, additive and
closed under isomorphisms and all functors between additive categories are
additive. For a subclass U of A, we use addU to denote the subcategory of A
consisting of direct summands of finite direct sums of objects in U .

Let U1,U2, . . . ,Un be subcategories of A. Define

U1 � U2 := add{A∈A | there is an exact sequence 0→ U1 → A→ U2 → 0 in A

with U1 ∈ U1 and U2 ∈ U2}.
The category U1 � U2 � · · · � Un can be inductively described as follows

U1�U2�· · ·�Un := add{A∈A | there is an exact sequence 0→ U → A→ V → 0

in A with U ∈ U1 and V ∈ U2 � · · · � Un}.
For a subcategory U of A, set 〈U〉0 = 0, 〈U〉1 = addU , 〈U〉n = 〈U〉1�〈U〉n−1 for
any n ≥ 2, and 〈U〉∞ =

⋃
n≥0〈U〉n ([1]). If T is an object in A, we write 〈T 〉n

instead of 〈{T}〉n. For any subcategories U ,V and W of A, by [3, Proposition
2.2] we have

(U � V) �W = U � (V �W).

Definition 2.1 ([3, Definition 5.2]). For any subcategory X of A, one defines

sizeA X := inf{n ≥ 0 | X ⊆ 〈T 〉n+1 with T ∈ A},

rankA X := inf{n ≥ 0 | X = 〈T 〉n+1 with T ∈ A}.
The extension dimension dimA of A is defined to be dimA := rankAA.

It is easy to see that dimA = rankAA = sizeAA. Also one has the
following easy and useful observations.
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Proposition 2.2 ([12, Proposition 2.2]). Let U1 and U2 be subcategories of A
with U1 ⊆ U2. Then

(1) If V1 and V2 are subcategories of A with V1 ⊆ V2, then U1�V1 ⊆ U2�V2;
(2) 〈U1〉n ⊆ 〈U2〉n for any n ≥ 1;
(3) 〈U1〉n ⊆ 〈U1〉n+1 for any n ≥ 1;
(4) sizeAU1 ≤ sizeAU2.

For two subcategories U ,V of A, we set U⊕V = {U⊕V |U ∈ U and V ∈ V}.

Corollary 2.3 ([12, Corollary 2.3]). For any T1, T2 ∈ A and m,n ≥ 1,

(1) 〈T1〉m � 〈T2〉n ⊆ 〈T1 ⊕ T2〉m+n;
(2) 〈T1〉m ⊕ 〈T2〉n ⊆ 〈T1 ⊕ T2〉max{m,n}.

3. Layer lengths

We recall some notions from [4]. Let C be a length-category, that is, C is an
abelian, skeletally small category and every object of C has a finite composition
series. We denote by EndZ(C) the category of all additive functors from C to C,
and denote by rad the Jacobson radical lying in EndZ(C). Let α, β ∈ EndZ(C)
and α be a subfunctor of β, we have the quotient functor β/α ∈ EndZ(C) which
is defined as follows.

(1) (β/α)(M) := β(M)/α(M) for any M ∈ C;
(2) (β/α)(f) is the induced quotient morphism: for any f ∈ HomC(M,N),

0 // α(M) //

α(f)

��

β(M) //

β(f)

��

β(M)/α(M) //

(β/α)(f)

��

0

0 // α(N) // β(N) // β(N)/α(N) // 0.

For a subfunctor α ∈ EndZ(C) of the identity functor 1C of C, we write qα :=
1C/α ∈ EndZ(C). For any α ∈ EndZ(C), set the α-radical functor Fα := rad ◦α
and the α-socle quotient functor Gα := α/(soc ◦α).

Definition 3.1 ([4, Definition 3.1]). For any α, β ∈ EndZ(C), we define the
(α, β)-layer length ``βα : C −→ N ∪ {∞} via ``βα(M) = min{i ≥ 0 |α ◦ βi(M) =
0}; and the α-radical layer length ``α := ``Fαα and the α-socle layer length
``α := ``Gαα .

Note that, if α ∈ EndZ(C) is either a subfunctor or a quotient functor of 1C ,
then ``α(M) and ``α(M) are finite for all M in C. And the Loewy length is
obtained by taking α = 1C in Definition 3.1.

Recall that a torsion pair (or torsion theory) for C is a pair of classes (T ,F)
of objects in C satisfying the following conditions.

(1) HomC(M,N) = 0 for any M ∈ T and N ∈ F ;
(2) an object X ∈ C is in T if HomC(X,−)|F = 0;
(3) an object Y ∈ C is in F if HomC(−, Y )|T = 0.
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Let (T ,F) be a torsion pair for C. Recall that t := TraceT is the so called
torsion radical attached to (T ,F). Then t(M) := Σ{Im f | f ∈ HomC(T,M)
with T ∈ T } is the largest subobject of M lying in T .

Definition 3.2 ([6]). A class X in C is called a ttf-class if there exist classes

T and F such that (T ,X ) and (X ,F) are torsion theories for C. In this case,
the triple (T ,X ,F) is called a ttf-theory.

In the following sections, Λ is an Artin algebra. Then the category mod Λ of
finite generated right Λ-modules is a length-category. We use S<∞ to denote
the set of the simple modules in mod Λ with finite injective dimension. From
now on, assume that S is a subset of S<∞ and S ′ is the set of all others simple
modules in mod Λ. We write F (S) := {M ∈ mod Λ | there exists a finite chain

0 = M0 ⊆M1 ⊆ · · · ⊆Mm = M

of submodules of M such that each quotient Mi/Mi−1 is isomorphic to some
module in S}.

Lemma 3.3 ([4, Lemma 5.7 and Proposition 5.9]). Let S be some set of simple
objects in mod Λ, S ′ be all others simple objects in mod Λ and F (S) be as above.
Then (TS ,F (S),FS) is a ttf-theory where TS = {M ∈ mod Λ | topM ∈ addS ′}
and FS = {M ∈ mod Λ | socM ∈ addS ′}.

By [4, Proposition 5.3], we denote the torsion radical tS = TraceTS and

t̃S = TraceF (S). Here (TS ,F (S),FS) is a ttf-theory in mod Λ, and we have the
following

Proposition 3.4.

(1) The functor tS preserves monomorphisms and epimorphisms;
(2) The functor qt̃S preserves monomorphisms and epimorphisms;

(3) The functor Gqt̃S
preserves monomorphisms and epimorphisms.

Proof. (1) Let f : M −→ N be a monomorphism. Consider the following
diagram:

0

��
0 // tS(M) //

tS(f)

��

M //

f

��

qtS (M) //

qtS (f)

��

0

0 // tS(N) // N // qtS (N) // 0.

By the commutativity of left square, we get that tS(f) is a monomorphism.
Since (TS ,F (S),FS) is a ttf-theory, then tS is torsion radical and F (S) is closed
under quotients. By [10, Ch.VI.Ex 5], we get that tS preserves epimorphisms.
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(2) Let f : M −→ N be an epimorphism. Consider the following diagram:

0 // t̃S(M) //

t̃S(f)

��

M //

f

��

qt̃S (M) //

qt̃S
(f)

��

0

0 // t̃S(N) // N //

��

qt̃S (N) // 0.

0

By the commutativity of right square, we get that qt̃S (f) is an epimorphism.

Because (TS ,F (S),FS) is a ttf-theory, then t̃S is torsion radical and F (S) is
closed under subobjects. Hence qt̃S preserves monomorphisms by [4, Lemma

3.7].
(3) The functor Gqt̃S

preserves monomorphisms since qt̃S preserves mono-

morphisms and G := 1/ soc preserves monomorphisms by [4, Section 3].
Let f : M −→ N be an epimorphism. By (2), qt̃S (f) is an epimorphism.

Consider the following diagram:

0 // soc qt̃S (M) //

soc qt̃S
(f)

��

qt̃S (M) //

qt̃S
(f)

��

Gqt̃S
(M) //

Gq
t̃S

(f)

��

0

0 // soc qt̃S (N) // qt̃S (N) //

��

Gqt̃S
(N) // 0.

0

By the commutativity of right square, we get that Gqt̃S
(f) is an epimorphism.

�

In the following, we show that the radical layer lengths of Λ and DΛ are
equal, and the radical layer length of Λ is an upper bound for the radical layer
length of mod Λ.

Proposition 3.5. Let Λ be an Artin algebra and S be some subset of simple
objects in mod Λ. Then we have

(1) If M ∈ mod Λ, then ``tS (M) ≤ ``tS (Λ);
(2) ``tS (Λ) = ``tS (DΛ) = ``tS (Λ⊕DΛ).

Proof. (1) Since Λ is an Artin algebra andM ∈ mod Λ, we have an epimorphism
Λn →M → 0. We have ``tS (M) ≤ ``tS (Λ) by [4, Lemma 3.4].

(2) We only prove that ``tS (Λ) = ``tS (DΛ). Since Λ is an Artin algebra and
DΛ is finite generated as Λ-module, we have an epimorphism Λn → DΛ → 0.
Due to tS and rad preserve epimorphisms, we have ``tS (DΛ) ≤ ``tS (Λ) by [4,
Lemma 3.4]. Similarly, we have a monomorphism 0→ Λ→ (DΛ)n. Due to tS
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and rad preserve monomorphisms, we have ``tS (Λ) ≤ ``tS (DΛ) by [4, Lemma
3.4]. Hence we have ``tS (Λ) = ``tS (DΛ). �

Example 3.6. Consider the algebra Λ given by the quiver

2

β

��
4 1

γ
��

α

ZZ

3

δ

ZZ

with the relation βα = δγ. Then the Auslander-Reiten quiver of Γ(mod Λ) is
of the form

1
1 0

0

��

0
0 0

1

��

1
0 1

0

��
0

1 0
0

CC

��

1
1 0

1

CC

��

//
1

1 1
1

//
1

0 1
1

CC

��

0
0 1

0

0
1 0

1

CC

1
0 0

0

CC

0
0 1

1

CC

Let S := {S(3), S(4)} and S ′ = {S(1), S(2)} in mod Λ. In order to compute
``tS (M) for M ∈ mod Λ, we need to find the smallest non-negative integer j

such that tSF
j
tS

(M) = 0. Since topP (1) = S(1) ∈ addS ′, we have tS(P (1)) =
P (1) by [4, Proposition 5.9(a)]. Thus

FtS (P (1)) = rad tS(P (1)) = rad(P (1)) =
1

1 0
1

FtS (
1

1 0
1

) =
0

1 0
0
, tSFtS (

1
1 0

1
) = 0.

Hence ``tS (P (1)) = 2. Similarly, we have

``tS (P (i)) =


2, if i = 1;

1, if i = 2;

0, if i = 3, 4;

``tS (I(i)) =

{
1, if i = 1, 3;

2, if i = 2, 4.

Because Λ = ⊕4
i=1P (i) and DΛ = ⊕4

i=1I(i), we have

``tS (Λ) = max{``tS (P (i)) | 1 ≤ i ≤ 4} = 2,

``tS (DΛ) = max{``tS (I(i)) | 1 ≤ i ≤ 4} = 2
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by [4, Lemma 3.4(a)]. Hence ``tS (Λ) = ``tS (DΛ). Similarly, we have

``tS (
1

1 0
1

) = 1, ``tS (
0

0 0
1

) = 0, ``tS (
1

0 0
0

) = 1, ``tS (
1

0 1
1

) = 2.

Hence we have ``tS (M) ≤ ``tS (Λ) = ``tS (DΛ) for M ∈ mod Λ.

4. Dimension of module categories

Let X ∈ mod Λ. If there exists a monomorphism f : X −→ E in mod Λ
such that E is an injective envelope of X, then we write Ω−1(X) =: Coker f .
Dually, if there exists an epimorphism g : P −→ X in mod Λ such that P is
a projective cover of X, then we write Ω1(X) =: Ker g. Inductively, for any
n ≥ 2, we write Ωn(X) := Ω1(Ωn−1(X)) and Ω−n(X) := Ω−1(Ω−(n−1)(X)).

Proposition 4.1. Let S be some subset of simple objects in mod Λ and M ∈
mod Λ. If qt̃S (M) 6= 0, then ``qt̃S

(Ω−1qt̃S (M)) ≤ ``tS (DΛ)− 1.

Proof. Assume that qt̃S (M) 6= 0. Consider the following exact sequence

0 // qt̃S (M) // I // Ω−1qt̃S (M) // 0

where I is the injective envelope of qt̃S (M). Hence we have soc I ⊆ qt̃S (M). So

we have an exact sequence 0 // qt̃S (M)/ soc I // I/ soc I // Ω−1qt̃S (M) // 0 .

Since qt̃S and Gqt̃S
preserve epimorphisms, we have

``qt̃S
(Ω−1qt̃S (M)) ≤ ``qt̃S (I/ soc I)

by [4, Lemma 3.4]. Since soc I ⊆ qt̃S (M), soc I ∈ addS ′. Hence top soc I ∈
addS ′ and soc I ∈ TS by [4, Proposition 5.9]. By [4, Corollary 5.6 and Propo-
sition 4.1], ``qt̃S

(I/ soc I) = ``tS (I/ soc I) = ``tS (I)− 1 ≤ ``tS (DΛ)− 1. �

Lemma 4.2. Let S be a subset of the set S<∞ of the simple modules in mod Λ
with finite injective dimension. If qt̃S (M) 6= 0 and idS = α, then we have an
isomorphism

Ωα+2(Ω−(α+2)(M)) ∼= Ωα+2(Ω−(α+1)(qt̃S (Ω−1(qt̃S (M)))));

and an exact sequence

0→ Ωα+2(Ω−(α+1)(soc qt̃SG
i−1
qt̃S

(Ω−1(qt̃S (M)))))→

Ωα+2(Ω−(α+1)(qt̃SG
i−1
qt̃S

(Ω−1(qt̃S (M)))))⊕ Ωα+2(Ii)⊕ Pi →

Ωα+2(Ω−(α+1)(Giqt̃S
(Ω−1(qt̃S (M)))))→ 0

for any 1 ≤ i ≤ n− 2. Moreover, we have isomorphisms

Ωα+2(Ω−(α+1)(Giqt̃S
(Ω−1(qt̃S (M))))) ∼= Ωα+2(Ω−(α+1)(qt̃SG

i
qt̃S

(Ω−1(qt̃S (M)))))
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for any 1 ≤ i ≤ n− 2, and

Ωα+2(Ω−(α+1)(qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))))⊕ Ωα+2(In−1)

∼= Ωα+2(Ω−(α+1)(soc qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M))))).

Proof. We have the following exact sequences:

0→ t̃S(M)→M → qt̃S (M)→ 0,

0→ t̃S(Ω−1(qt̃S (M)))→ Ω−1(qt̃S (M))→ qt̃S (Ω−1(qt̃S (M)))→ 0,

0→ soc qt̃S (Ω−1(qt̃S (M)))→ qt̃S (Ω−1(qt̃S (M)))→ Gqt̃S
(Ω−1(qt̃S (M)))→ 0,

0→ t̃SGqt̃S
(Ω−1(qt̃S (M)))→ Gqt̃S

(Ω−1(qt̃S (M)))

→ qt̃SGqt̃S
(Ω−1(qt̃S (M)))→ 0,

0→ soc qt̃SGqt̃S
(Ω−1(qt̃S (M)))→ qt̃SGqt̃S

(Ω−1(qt̃S (M)))

→ G2
qt̃S

(Ω−1(qt̃S (M)))→ 0,

...

0→ t̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))→ Gn−2qt̃S
(Ω−1(qt̃S (M)))

→ qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))→ 0,

0→ soc qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))→ qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))

→ Gn−1qt̃S
(Ω−1(qt̃S (M)))→ 0.

By Proposition 4.1, ``qt̃S
(Ω−1qt̃S (M)) ≤ ``tS (DΛ)− 1 = n− 1. Hence

qt̃S (Gn−1qt̃S
(Ω−1(qt̃S (M)))) = 0.

Then by [4, Proposition 5.3], we have idGn−1qt̃S
(Ω−1(qt̃S (M))) ≤ α. We have

the following:

Ω−(α+2)(M) ∼= Ω−(α+2)(qt̃S (M)),

Ω−(α+2)(qt̃S (M)) = Ω−(α+1)(Ω−1qt̃S (M)) ∼= Ω−(α+1)(qt̃S (Ω−1(qt̃S (M)))),

0→ Ω−(α+1)(soc qt̃S (Ω−1(qt̃S (M))))→ Ω−(α+1)(qt̃S (Ω−1(qt̃S (M))))⊕ I1
→ Ω−(α+1)(Gqt̃S

(Ω−1(qt̃S (M))))→ 0, (exact)

Ω−(α+1)(Gqt̃S
(Ω−1(qt̃S (M)))) ∼= Ω−(α+1)(qt̃SGqt̃S

(Ω−1(qt̃S (M)))),

0→ Ω−(α+1)(soc qt̃SGqt̃S
(Ω−1(qt̃S (M))))

→ Ω−(α+1)(qt̃SGqt̃S
(Ω−1(qt̃S (M))))⊕ I2

→ Ω−(α+1)(G2
qt̃S

(Ω−1(qt̃S (M))))→ 0, (exact)

...
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Ω−(α+1)(Gn−2qt̃S
(Ω−1(qt̃S (M)))) ∼= Ω−(α+1)(qt̃SG

n−2
qt̃S

(Ω−1(qt̃S (M)))),

Ω−(α+1)(qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M))))⊕ In−1
∼= Ω−(α+1)(soc qt̃SG

n−2
qt̃S

(Ω−1(qt̃S (M)))),

where all Ii are injective in mod Λ; we also have the following

Ωα+2(Ω−(α+2)(M)) ∼= Ωα+2(Ω−(α+1)(Ω−1qt̃S (M)))

= Ωα+2(Ω−(α+1)(qt̃S (Ω−1(qt̃S (M))))),

0→ Ωα+2(Ω−(α+1)(soc qt̃S (Ω−1(qt̃S (M)))))

→ Ω(α+2)(Ω−(α+1)(qt̃S (Ω−1(qt̃S (M)))))⊕ Ωα+2(I1)⊕ P1

→ Ωα+2(Ω−(α+1)(Gqt̃S
(Ω−1(qt̃S (M)))))→ 0, (exact)

Ωα+2(Ω−(α+1)(Gqt̃S
(Ω−1(qt̃S (M)))))

∼= Ωα+2(Ω−(α+1)(qt̃SGqt̃S
(Ω−1(qt̃S (M))))),

0→ Ωα+2(Ω−(α+1)(soc qt̃SGqt̃S
(Ω−1(qt̃S (M)))))

→ Ωα+2(Ω−(α+1)(qt̃SGqt̃S
(Ω−1(qt̃S (M)))))⊕ Ωα+2(I2)⊕ P2

→ Ωα+2(Ω−(α+1)(G2
qt̃S

(Ω−1(qt̃S (M)))))→ 0, (exact)

...

Ωα+2(Ω−(α+1)(Gn−2qt̃S
(Ω−1(qt̃S (M)))))

∼= Ωα+2(Ω−(α+1)(qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M))))),

Ωα+2(Ω−(α+1)(qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M)))))⊕ Ωα+2(In−1)

∼= Ωα+2(Ω−(α+1)(soc qt̃SG
n−2
qt̃S

(Ω−1(qt̃S (M))))),

where all Pi are projective in mod Λ. �

In the following, we will show that the sum of the injective dimension of
a certain class of simple right Λ-modules and the radical layer length of DΛ
provides an upper bound for the extension dimension of mod Λ.

Theorem 4.3. Let S be a subset of the set S<∞ of the simple modules in
mod Λ with finite injective dimension. Then dim mod Λ ≤ idS +``tS (DΛ)
where idS = sup{idM |M ∈ S} with S 6= ∅; idS = −1 with S = ∅.

Proof. Let ``tS (DΛ) = n and idS = α.
If n = 0, that is, tS(DΛ) = 0, then DΛ ∈ F(S), which implies that S is the

set of all simple modules. Thus S = S<∞ and gl.dim Λ = α. So the assertion
follows from [12, Corollary 3.6].
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Now let n ≥ 1 and M ∈ mod Λ. Consider the following exact sequence

0 −→M −→ E0 −→ E1 −→ · · · −→ Eα+1 −→ Ω−(α+2)(M) −→ 0

in mod Λ with all Ei injective. By [3, Lemma 5.8],

M ∈ 〈Ωα+2(Ω−(α+2)(M))〉1 � 〈⊕α+1
i=0 Ωi(DΛ)〉α+2.

By Lemma 4.2 we have

Ωα+2(Ω−(α+2)(M))

∼= Ωα+2(Ω−(α+1)(Ω−1(qt̃S (M))))

∼= Ωα+2(Ω−(α+1)(qt̃S (Ω−1(qt̃S (M)))))

∈ 〈Ωα+2(Ω−(α+1)(soc qt̃S (Ω−1(qt̃S (M)))))〉1
� 〈Ωα+2(Ω−(α+1)(Gqt̃S

Ω−1(qt̃S (M))))〉1
= 〈Ωα+2(Ω−(α+1)(soc qt̃S (Ω−1(qt̃S (M)))))〉1
� 〈Ωα+2(Ω−(α+1)(qt̃SGqt̃S

Ω−1(qt̃S (M))))〉1
⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1 � 〈Ωα+2(Ω−(α+1)(qt̃SGqt̃S

Ω−1(qt̃S (M))))〉1
⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1 � 〈Ωα+2(Ω−(α+1)(soc qt̃SGqt̃S

Ω−1(qt̃S (M))))〉1
� 〈Ωα+2(Ω−(α+1)(G2

qt̃S
Ω−1(qt̃S (M))))〉1

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1 � 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1
� 〈Ωα+2(Ω−(α+1)(G2

qt̃S
Ω−1(qt̃S (M))))〉1

...

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1 � · · · � 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1︸ ︷︷ ︸
n−2

� 〈Ωα+2(Ω−(α+1)(Gn−2qt̃S
Ω−1(qt̃S (M))))〉1

= 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−2
� 〈Ωα+2(Ω−(α+1)(qt̃SG

n−2
qt̃S

Ω−1(qt̃S (M))))〉1

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−2
� 〈Ωα+2(Ω−(α+1)(qt̃SG

n−2
qt̃S

Ω−1(qt̃S (M))))⊕ Ωα+2(In−1)〉1

= 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−2
� 〈Ωα+2(Ω−(α+1)(soc qt̃SG

n−2
qt̃S

Ω−1(qt̃S (M))))〉1

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−2 � 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉1
= 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−1,
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and hence

M ∈ 〈Ωα+2(Ω−(α+2)(M))〉1 � 〈⊕α+1
i=0 Ωi(DΛ)〉α+2

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))〉n−1 � 〈⊕α+1
i=0 Ωi(DΛ)〉α+2

⊆ 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))⊕ (⊕α+1
i=0 Ωi(DΛ))〉α+1+n. (by Corollary 2.3(1))

It follows that

mod Λ = 〈Ωα+2(Ω−(α+1)(Λ/ rad Λ))⊕ (⊕α+1
i=0 Ωi(DΛ))〉α+1+n

and dim Λ ≤ α+ n. �

Corollary 4.4. Let S be a subset of the set of the simple modules with finite
projective dimension and finite injective dimension in mod Λ. Then

dim mod Λ ≤ min{idS,pdS}+ ``tS (DΛ).

Proof. It is a direct consequence of Theorem 4.3, [12, Theorem 3.19], and
Proposition 3.5(2). �

Corollary 4.5.
(1) ([1, Example 1.6(ii)]) dim mod Λ ≤ LL(DΛ)− 1 = LL(Λ)− 1;
(2) ([12, Corollary 3.6] and [5, 4.5.1(3)]) dim mod Λ ≤ gl.dim Λ.

Proof. (1) Let S = ∅. Then idS = −1 and the torsion pair (TS ,F(S)) =
(mod Λ, 0). By [4, Proposition 5.9(a)], we have tS(DΛ) = DΛ and ``tS (DΛ) =
LL(DΛ). It follows from Theorem 4.3 that dim mod Λ ≤ LL(DΛ)−1 = LL(Λ)−
1.

(2) Let S = S<∞ = {all simple modules in mod Λ}. Then idS = gl.dim Λ
and the torsion pair (TS ,F(S)) = (0,mod Λ). By [4, Proposition 5.3], we have
tS(DΛ) = 0 and ``tS (DΛ) = 0. It follows from Theorem 4.3 that dim mod Λ ≤
gl.dim Λ. �

5. Examples

Now we give examples to show that there is no necessary relationship be-
tween idS +``tS (DΛ) and pdS +``tS (Λ). The following first example shows
that dim mod Λ ≤ idS +``tS (DΛ) = pdS +``tS (Λ).

Example 5.1. Consider the bound quiver algebra Λ = kQ/I, where k is a
field and Q is given by

2n+ 5 2n+ n
α3n

$$
2n+ 4

α2n+4

::

2n+ 1

α2n+1zz

1
α1 //α2noo 2

α2 // · · ·
α2n−1// 2n

2n+ 3

α2n+3

dd

2n+ 2
α2n+2

oo
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and I is generated by {α2nα2n+1;ωi for 1 ≤ i ≤ n−1} where ω1 = α2n+1α2n+2

· · ·α2n+n; ωi = α2n+iα2n+i+1α2n+i+2 · · ·α2n+i−1α2n+i for 2 ≤ i ≤ n−1. Then
the indecomposable projective Λ-modules are

1

~~ ��
2n+ 1 2

��
P (1) = 3

��
...

��
2n

j

��
P (j) = j + 1

��
...

��
2n

2n+ 1

��
2n+ 2

��
P (2n+ 1) = 2n+ 3

��
...

��
2n+ n

2n+ i

��
2n+ i+ 1

��
P (2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

where 2 ≤ j ≤ 2n, 2 ≤ i ≤ n. Then the indecomposable injective Λ-modules
are

1

��
2

��
I(j) = 3

��
...

��
j

2n+ 2

��
2n+ 3

��
I(2n+ 1) = 2n+ 4

��
...

��

1

��
2n+ 1

2n+ i

��
2n+ i+ 1

��
I(2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

where 1 ≤ j ≤ 2n, 2 ≤ i ≤ n.
We have

pdS(i) =



2n− 1, if i = 1;

1, if 2 ≤ i ≤ 2n− 1;

0, if i = 2n;

2j + 1, if i = 2n+ n− j for 0 ≤ j < n− 1;

2n− 2, if i = 2n+ 1;

idS(i) =


0, if i = 1;

1, if 2 ≤ i ≤ 2n;

2n− 1, if i = 2n+ 1;

2j − 2, if i = 2n+ j for 2 ≤ j ≤ n.

Hence LL(Λ) = 2n and gl.dim Λ = 2n − 1. So S<∞ = {all simple modules in
mod Λ}. Let S := {S(i) | 2 ≤ i ≤ 2n}(⊆ S<∞) and S ′ be all the others simple
modules in mod Λ. Then pdS = 1 = idS and S ′ = {S(i) | i = 1 or 2n + 1 ≤
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i ≤ 2n + n}. Because Λ = ⊕3n
i=1P (i), we have ``tS (Λ) = max{``tS (P (i)) | 1 ≤

i ≤ 3n} by [4, Lemma 3.4(a)].
In order to compute ``tS (P (i)), we need to find the smallest non-negative

integer j such that tSF
j
tS

(P (i)) = 0. Since topP (1) = S(1) ∈ addS ′, we have
tS(P (1)) = P (1) by [4, Proposition 5.9(a)]. Thus

FtS (P (1)) = rad tS(P (1)) = rad(P (1)) = S(2n+ 1)⊕ P (2).

Since topS(2n+ 1) = S(2n+ 1) ∈ addS ′, we have tS(S(2n+ 1)) = S(2n+ 1)
by [4, Proposition 5.9(a)]. Since P (2) ∈ F(S), we have tS(P (2)) = 0 by [4,
Proposition 5.3]. So

tSFtS (P (1)) = tS(S(2n+ 1)⊕ P (2)) = S(2n+ 1).

It follows that

F 2
tS

(P (1)) = rad tSFtS (P (1)) = rad(S(n+ 1)) = 0

and tSF
2
tS

(P (1)) = 0, which implies ``tS (P (1)) = 2. Similarly, we have

``tS (P (i)) =


0, if 2 ≤ i ≤ 2n;

2, if i = 1;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n;

``tS (I(i)) =


1, if 1 ≤ i ≤ 2n;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n;

Consequently, we conclude that ``tS (Λ) = max{``tS (P (i)) | 1 ≤ i ≤ 3n} =
n+ 1 = ``tS (DΛ). dim mod Λ ≤ idS +``tS (Λ) = pdS +``tS (Λ) = n+ 2.

The following example shows that dim mod Λ ≤ pdS +``tS (Λ) = n + 2 <
idS +``tS (DΛ) = n+ 3.

Example 5.2. Consider the bound quiver algebra Λ = kQ/I, where k is a
field and Q is given by

2n+ 5 2n+ n
α3n

##
2n+ 4

α2n+4

<<

2n+ 1

α2n+1{{

1
α1 //α2noo 2

α2 // · · ·
α2n−1// 2n x

αoo y
βoo

2n+ 3

α2n+3

cc

2n+ 2
α2n+2

oo

and I is generated by {βα;α2nα2n+1;ωi for 1 ≤ i ≤ n − 1} where ω1 =
α2n+1α2n+2 · · ·α2n+n; ωi = α2n+iα2n+i+1α2n+i+2 · · ·α2n+i−1α2n+i for 2 ≤ i ≤
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n− 1. Then the indecomposable projective Λ-modules are

1

~~ ��
2n+ 1 2

��
P (1) = 3

��
...

��
2n

j

��
P (j) = j + 1

��
...

��
2n

2n+ 1

��
2n+ 2

��
P (2n+ 1) = 2n+ 3

��
...

��
2n+ n

2n+ i

��
2n+ i+ 1

��
P (2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

x

��
P (x) = 2n

y

��
P (y) = x

where 2 ≤ j ≤ 2n, 2 ≤ i ≤ n. Then the indecomposable injective Λ-modules
are

1

��
2

��
I(j) = 3

��
...

��
j

1

��
2

��
I(2n) = 3

��
...

��

x

��
2n

2n+ 2

��
2n+ 3

��
I(2n+ 1) = 2n+ 4

��
...

��

1

��
2n+ 1

2n+ i

��
2n+ i+ 1

��
I(2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

y

��
I(x) = x I(y) = y

where 1 ≤ j ≤ 2n− 1, 2 ≤ i ≤ n.
We have

pdS(i) =



2n− 1, if i = 1;

1, if 2 ≤ i ≤ 2n− 1 or i = x;

0, if i = 2n;

2, if i = y;

2j + 1, if i = 2n+ n− j for 0 ≤ j < n− 1;

2n− 2, if i = 2n+ 1;
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idS(i) =



0, if i = 1 or y;

1, if 2 ≤ i ≤ 2n− 1 or i = x;

2, if i = 2n;

2n− 1, if i = 2n+ 1;

2j − 2, if i = 2n+ j for 2 ≤ j ≤ n.

Hence LL(Λ) = 2n and gl.dim Λ = 2n − 1. So S<∞ = {all simple modules
in mod Λ}. Let S := {S(i) | 2 ≤ i ≤ 2n}(⊆ S<∞) and S ′ be all the others
simple modules in mod Λ. Then pdS = 1, idS = 2 and S ′ = {S(i) | i =
1; x; y; 2n+ 1 ≤ i ≤ 2n+ n}.

Similarly as above, we have

``tS (P (i)) =



0, if 2 ≤ i ≤ 2n;

1, if i = x;

2, if i = 1, or i = y;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n;

``tS (I(i)) =


1, if 1 ≤ i ≤ 2n, or i = y;

2, if i = x;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n.

Consequently, we conclude that ``tS (Λ) = max{``tS (P (i)) | 1 ≤ i ≤ 3n} =
n+1 = ``tS (DΛ). dim mod Λ ≤ pdS +``tS (Λ) = n+2 < idS +``tS (Λ) = n+3.

The following example shows that dim mod Λ ≤ idS +``tS (DΛ) = n + 2 <
pdS +``tS (Λ) = n+ 3.

Example 5.3. Consider the bound quiver algebra Λ = kQ/I, where k is a
field and Q is given by

2n+ 5 2n+ n
α3n

##
2n+ 4

α2n+4

;;

2n+ 1

α2n+1{{

1
α1 //α2noo 2

α2 // · · ·
α2n−1// 2n

α // x

2n+ 3

α2n+3

cc

2n+ 2
α2n+2

oo

and I is generated by {α2n−1α;α2nα2n+1;ωi for 1 ≤ i ≤ n − 1} where ω1 =
α2n+1α2n+2 · · ·α2n+n; ωi = α2n+iα2n+i+1α2n+i+2 · · ·α2n+i−1α2n+i for 2 ≤ i ≤
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n− 1. Then the indecomposable projective Λ-modules are

1

~~ ��
2n+ 1 2

��
P (1) = 3

��
...

��
2n

j

��
P (j) = j + 1

��
...

��
2n

2n+ 1

��
2n+ 2

��
P (2n+ 1) = 2n+ 3

��
...

��
2n+ n

2n+ i

��
2n+ i+ 1

��
P (2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

2n

��
P (2n) = x P (x) = x

where 2 ≤ j ≤ 2n−1, 2 ≤ i ≤ n. Then the indecomposable injective Λ-modules
are

1

��
2

��
I(j) = 3

��
...

��
j

2n+ 2

��
2n+ 3

��
I(2n+ 1) = 2n+ 4

��
...

��

1

��
2n+ 1

2n+ i

��
2n+ i+ 1

��
I(2n+ i) = 2n+ i+ 2

��
...

��
2n+ i− 1

��
2n+ i

2n

��
I(x) = x

where 1 ≤ j ≤ 2n, 2 ≤ i ≤ n.
We have

pdS(i) =



2n− 1, if i = 1;

1, if 2 ≤ i < 2n− 1 or i = 2n;

0, if i = x;

2, if i = 2n− 1;

2j + 1, if i = 2n+ n− j for 0 ≤ j < n− 1;

2n− 2, if i = 2n+ 1;

idS(i) =



0, if i = 1 ;

1, if 2 ≤ i ≤ 2n;

2, if i = x;

2n− 1, if i = 2n+ 1;

2j − 2, if i = 2n+ j for 2 ≤ j ≤ n.



ON THE EXTENSION DIMENSION OF MODULE CATEGORIES 1405

Hence LL(Λ) = 2n and gl.dim Λ = 2n − 1. So S<∞ = {all simple modules in
mod Λ}. Let S := {S(i) | 2 ≤ i ≤ 2n}(⊆ S<∞) and S ′ be all the others simple
modules in mod Λ. Then pdS = 2, idS = 1 and S ′ = {S(i) | i = 1; x; 2n+1 ≤
i ≤ 2n+ n}.

Similarly as above, we have

``tS (P (i)) =



0, if 2 ≤ i < 2n;

1, if i = x; or i = 2n;

2, if i = 1;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n;

``tS (I(i)) =


1, if 1 ≤ i ≤ 2n; or i = x;

n, if i = 2n+ 1;

n+ 1, if 2n+ 2 ≤ i ≤ 2n+ n.

Consequently, we conclude that ``tS (Λ) = max{``tS (P (i)) | 1 ≤ i ≤ 3n} =
n+1 = ``tS (DΛ), dim mod Λ ≤ idS +``tS (Λ) = n+2 < pdS +``tS (Λ) = n+3.
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