ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION WITH THE SECOND-MOMENT TURBULENCE MODEL

이차모멘트 난류모델을 사용한 Rayleigh-Benard 자연대류 유동 해석

  • Published : 2008.03.26

Abstract

This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from $Ra=2{\times}10^6$ to $Ra=10^9$, and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) ($Nu=0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) ($Nu=0.124Ra^{0.309}$) in the 'hard' convective tubulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh Benard convection.

Keywords