Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae (Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University) ;
  • Park, Soo-Hyun (Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University) ;
  • Koh, Hyun-Ju (Department of Veterinary Physiology, College of Veterinary Medicine, Hormone Research Center, Chonnam National University)
  • Published : 1997.08.21

Abstract

Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

Keywords