Effects of Fluoxetine on ATP-induced Calcium Signaling in PC12 Cells

  • Lee, Yeo-Min (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hee-Jung (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Hong, Sun-Hwa (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Myung-Jun (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Min, Do-Sik (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Rhie, Duck-Joo (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Myung-Suk (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Jo, Yang-Hyeok (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Hahn, Sang-June (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Yoon, Shin-Hee (Department of Physiology, College of Medicine, The Catholic University of Korea)
  • Published : 2004.02.21

Abstract

Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for $[^3H]-inositol$ phosphates (IPs). Treatment with ATP $(100\;{\mu}M)$ for 2 min induced $[Ca^{2+}]_i$ increases. The ATP-induced $[Ca^{2+}]_i$ increases were significantly decreased by removal of extracellular $Ca^{2+}$ and treatment with the inhibitor of endoplasmic reticulum $Ca^{2+}$ ATPase thapsigargin $(1\;{\mu}M)$. Treatment with fluoxetine for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase concentration-dependently. Treatment with fluoxetine $(30\;{\mu}M)$ for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase following removal of extracellular $Ca^{2+}$ and depletion of intracellular $Ca^{2+}$ stores. While treatment with the L-type $Ca^{2+}$ channel antagonist nimodipine for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM $K^+-induced$ $[Ca^{2+}]_i$ increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced $[^3H]-IPs$ formation. Collectively, we conclude that fluoxetine inhibits ATP-indueed $[Ca^{2+}]_i$ increases in PC12 cells by inhibiting both an influx of extracellular $Ca^{2+}$ and a release of $Ca^{2+}$ from intracellular stores without affecting IPs formation.

Keywords

References

  1. Borys DJ, Setzer SC, Ling LJ, Reisdorf JJ, Day LC, Krenzelok EP. Acute fluoxetine overdose: a report of 234 cases. Am J Emerg Med 10: 115-120, 1992 https://doi.org/10.1016/0735-6757(92)90041-U
  2. Brake AJ, Wagenbach MJ, Julius D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371: 519-523, 1994 https://doi.org/10.1038/371519a0
  3. Choi JS, Hahn SJ, Rhie DJ, Yoon SH, Jo YH, Kim MS. Mechanism of fluoxetine block of cloned voltage-activated potassium channel Kv1.3. J Pharmacol Exp Ther 291: 1-6, 1999
  4. Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, Min do S, Jo YH, Kim MS, Sung KW, Hahn SJ. Mechanism of block by fluoxetine of 5-hydroxytryptamine3 (5-HT3)-mediated currents in NCB-20 neuroblastoma cells. Biochem Pharmacol 66: 2125-2132, 2003 https://doi.org/10.1016/j.bcp.2003.08.012
  5. Choi SY, Kim KT. Characterization of Na$^+$ influx mediated by ATP4--activated P2 purinoceptors in PC12 cells. Br J Pharmacol 118: 935-940, 1996 https://doi.org/10.1111/j.1476-5381.1996.tb15489.x
  6. Cunha RA, Ribeiro JA. ATP as a presynaptic modulator. Life Sci 68: 119-137, 2000 https://doi.org/10.1016/S0024-3205(00)00923-1
  7. Deak F, Lasztoczi B, Pacher P, Petheo GL, Valeria K, Spat A. Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology 39: 1029- 1036, 2000 https://doi.org/10.1016/S0028-3908(99)00206-3
  8. Dwivedi Y, Agrawal AK, Rizavi HS, Pandey GN. Antidepressantsreduce hosphoinositide-specific phospholipase C (PI-PLC) activity and the mRNA and protein expression of selective PLC beta 1 isozyme in rat brain. Neuropharmacology 43: 1269-1279, 2002 https://doi.org/10.1016/S0028-3908(02)00253-8
  9. Fan P. Inhibition of a 5-HT3 receptor-mediated current by the selective serotonin uptake inhibitor, fluoxetine. Neurosci Lett 173: 210-212, 1994a https://doi.org/10.1016/0304-3940(94)90185-6
  10. Fan P. Effects of antidepressants on the inward current mediated by 5-HT3 receptors in rat nodose ganglion neurones. Br J Pharmacol 112: 741-744, 1994b https://doi.org/10.1111/j.1476-5381.1994.tb13140.x
  11. Farrugia G. Modulation of ionic currents in isolated canine and human jejunal circular smooth muscle cells by fluoxetine. Gastroenterology 110: 1438-1445, 1996 https://doi.org/10.1053/gast.1996.v110.pm8613049
  12. Fasolato C, Pizzo P, Pozzan T. Receptor-mediated calcium influx in PC12 cells. ATP and bradykinin activate two independent pathways. J Biol Chem 265: 20351-20355, 1990
  13. Garcia-Colunga J, Awad JN, Miledi R. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc Natl Acad Sci USA 94: 2041-2044, 1997 https://doi.org/10.1073/pnas.94.5.2041
  14. Gollasch M, Haller H. Multiple pathways for ATP-induced intracellular calcium elevation in pheochromocytoma (PC12) cells. Ren Physiol Biochem 18: 57-65, 1995
  15. Hahn SJ, Choi JS, Rhie DJ, Oh CS, Jo YH, Kim MS. Inhibition by fluoxetine of voltage-activated ion channels in rat PC12 cells. Eur J Pharmacol 367: 113-118, 1999 https://doi.org/10.1016/S0014-2999(98)00955-8
  16. Hur EM, Park TJ, Kim KT. Coupling of L-type voltage-sensitive calcium channels to P2X2 purinoceptors in PC12 cells. Am J Physiol Cell Physiol 280: C1121-1129, 2001 https://doi.org/10.1152/ajpcell.2001.280.5.C1121
  17. Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA. Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5: 322-329, 1993 https://doi.org/10.1176/jnp.5.3.322
  18. Kelly MW, Perry PJ, Holstad SG, Garvey MJ. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 11: 165-170, 1989 https://doi.org/10.1097/00007691-198903000-00008
  19. Komoroski RA, Newton JE, Cardwell D, Sprigg J, Pearce J, Karson CN. In vivo 19F spin relaxation and localized spectroscopy of fluoxetine in human brain. Magn Reson Med 31: 204-211, 1994 https://doi.org/10.1002/mrm.1910310214
  20. Majid MA, Okajima F, Kondo Y. Characterization of ATP receptor which mediates norepinephrine release in PC12 cells. Biochim Biophys Acta 1136: 283-289, 1992 https://doi.org/10.1016/0167-4889(92)90118-U
  21. Murrin RJ, Boarder MR. Neuronal "nucleotide" receptor linked to phospholipase C and phospholipase D? Stimulation of PC12 cells by ATP analogues and UTP. Mol Pharmacol 41: 561-568, 1992
  22. Nakazawa K, Fujimori K, Takanaka A, Inoue K. An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J Physiol 428: 257-272, 1990 https://doi.org/10.1113/jphysiol.1990.sp018211
  23. Nakazawa K, Inoue K. Roles of Ca2$^+$ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells. J Neurophysiol 68: 2026-2032, 1992 https://doi.org/10.1152/jn.1992.68.6.2026
  24. Orsulak PJ, Kenney JT, Debus JR, Crowley G, Wittman PD. Determination of the antidepressant fluoxetine and its metabolite norfluoxetine in serum by reversed-phase HPLC with ultraviolet detection. Clin Chem 34: 1875-1878, 1988
  25. Pacher P, Magyar J, Szigligeti P, Banyasz T, Pankucsi C, Korom Z, Ungvari Z, Kecskemeti V, Nanasi PP. Electrophysiological effects of fluoxetine in mammalian cardiac tissues. Naunyn Schmiedebergs Arch Pharmacol 361: 67-73, 2000 https://doi.org/10.1007/s002109900154
  26. Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C, 3rd. Inhibition of neuronal Na$^+$ channels by antidepressant drugs. J Pharmacol Exp Ther 284: 208-214, 1998
  27. Park TJ, Song SK, Kim KT. A2A adenosine receptors inhibit ATP-induced Ca2$^+$ influx in PC12 cells by involving protein kinase A. J Neurochem 68: 2177-2185, 1997 https://doi.org/10.1046/j.1471-4159.1997.68052177.x
  28. Pato MT, Murphy DL, DeVane CL. Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 11: 224-225, 1991 https://doi.org/10.1097/00004714-199106000-00024
  29. Rae JL, Rich A, Zamudio AC, Candia OA. Effect of Prozac on whole cell ionic currents in lens and corneal epithelia. Am J Physiol 269: C250-256, 1995 https://doi.org/10.1152/ajpcell.1995.269.1.C250
  30. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 50: 413-492, 1998
  31. Reber BF, Neuhaus R, Reuter H. Activation of different pathways for calcium elevation by bradykinin and ATP in rat pheochromocytoma (PC 12) cells. Pflugers Arch 420: 213-218, 1992 https://doi.org/10.1007/BF00374993
  32. Rhie D-J, Sung J-H, Ha U-S, Kim HJ, Min DS, Hahn SJ, Kim M-S, Jo Y-H, Yoon SH. Endogenous somatostatin receptors mobilize calcium from inositol 1,4,5- risphosphate-sensitive stores in NG108-15 cells. Brain Res 975: 120-128, 2003 https://doi.org/10.1016/S0006-8993(03)02596-4
  33. Stauderman KA, Gandhi VC, Jones DJ. Fluoxetine-induced inhibition of synaptosomal $[^3H]5$-HT release: possible $Ca^{2+}$-channel inhibition. Life Sci 50: 2125-2138, 1992 https://doi.org/10.1016/0024-3205(92)90579-E
  34. Suh BC, Lee CO, Kim KT. Signal flows from two phospholipase C-linked receptors are independent in PC12 cells. J Neurochem 64: 1071-1079, 1995 https://doi.org/10.1046/j.1471-4159.1995.64031071.x
  35. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2$^+$V stores by specific inhibition of the endoplasmic reticulum Ca2$^+$ -ATPase. Proc Natl Acad Sci USA 87: 2466-2470, 1990 https://doi.org/10.1073/pnas.87.7.2466
  36. Thayer SA, Sturek M, Miller RJ. Measurement of neuronal Ca2$^+$ transients using simultaneous microfluorimetry and electrophysiology. Pflugers Archiv - Eur J Physiol 412: 216-223, 1988 https://doi.org/10.1007/BF00583753
  37. Tytgat J, Maertens C, Daenens P. Effect of fluoxetine on a neuronal, voltage-dependent potassium channel (Kv1.1). Br J Pharmacol 122: 1417-1424, 1997 https://doi.org/10.1038/sj.bjp.0701545
  38. Unterberger U, Moskvina E, Scholze T, Freissmuth M, Boehm S. Inhibition of adenylyl cyclase by neuronal P2Y receptors. Br J Pharmacol 135:673-684, 2002 https://doi.org/10.1038/sj.bjp.0704514
  39. Wang SJ, Su CF, Kuo YH. Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48: 170-177, 2003 https://doi.org/10.1002/syn.10200
  40. Wong DT, Bymaster FP, Engleman EA. Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57: 411-441, 1995 https://doi.org/10.1016/0024-3205(95)00209-O