Proton implantation mechanism involved in the fabrication of SOI wafer by ion-cut process

Ion-cut에 의한 SOI웨이퍼 제조에서의 양성자조사기구

  • 우형주 (한국지질자원연구원, 입자빔응용팀) ;
  • 최한우 (한국지질자원연구원, 입자빔응용팀) ;
  • 김준곤 (한국지질자원연구원, 입자빔응용팀) ;
  • 지영용 (한국지질자원연구원, 입자빔응용팀)
  • Published : 2004.03.01

Abstract

The SOI wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by TRIM simulation that 65 keV proton implantation is required for the standard SOI wafer (200 nm SOI, 400 nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. The depth distribution of implanted hydrogen has been experimentally confirmed by ERD and SIMS measurements. The microstructure evolution in the damaged layer was also studied by X-TEM analysis.

양성자 주입과 웨이퍼접합기술을 접목한 ion-cut기술로서 SOI 웨이퍼를 제조하는 기술을 개발하고자 하였다. TRIM 전산모사결과 표준 SOI 웨이퍼 (200 nm SOI, 400 nm BOX) 제조를 위해서는 65 keV의 양성자주입이 요구됨을 알 수 있었다. 웨이퍼분리를 위한 최적 공정조건을 얻기 위해 조사선량과 열처리조건(온도 및 시간)에 따른 표면변화를 조사하였다. 실험결과 유효선량범위는 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$이며, 최적 아닐링조건은 $550^{\circ}C$에서 30분 정도로 나타났다. 주입된 수소의 깊이분포는 ERD(Elastic Recoil Detection)와 SIMS(Secondary Ion Mass Spectrometry)측정에 의해 실험적으로 확인되었다. 아울러 상해층의 미세구조 형성기구를 X-TEM측정을 통해 조사하였다.

Keywords

References

  1. S. Cristoloveanu, Solid State Electronics 45, 1403(2001) https://doi.org/10.1016/S0038-1101(00)00271-9
  2. A. Ploessel and G. Krauter, Solid-State Electronics 44, 775 (2000) https://doi.org/10.1016/S0038-1101(99)00273-7
  3. Next generation Semiconductor Wafer, SOl wafer and its manufacturing method invented by Canon, Eltran, http://www.canon.com/technology/production /index.com
  4. A. Ploessel and G. Krauter, Wafer direct bonding: tailoring adhesion between brittle materials, Materials Science & Engineering, R25, 1 (1999)
  5. Q.-Y. Tong and U. Goesele, Semiconductor Wafer Bonding-Science & Technology, (John Wiley & Sons, New York, 1999), pp. 1-15
  6. S. S. Iyer and A. J. Auberton-Herve, Silicon Wqfer Bonding Technology for VLSI and MEMS Applications, The Institution of Electrical Engineers, 2002
  7. J. Haisma and G.A.C.M. Spierings, Mat. Sci. Eng. R269, 1 (2002)
  8. A. Berthold, B. Jakoby and M.J. Vellekoop, Sensors and Actuators A 68, 410 (1998)
  9. M. Brnel, Nucl. Instr. Meth. 108, 313 (1996) https://doi.org/10.1016/0168-583X(95)01056-4
  10. B. Aspar, M. Brnel, H. Moriceau, C. Maleville, T. Poumeyrol, A.M. Papon, A. Claverie, and G. Benassayag, Microelectronic Engineering 36, 233 (1997) https://doi.org/10.1016/S0167-9317(97)00055-5
  11. C. Maleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Brnel, A. J. Auberton-Herve, and T. Barge, Mat. Sci. & Eng. B 46, 14 (1997) https://doi.org/10.1016/S0921-5107(96)01923-X
  12. J. D. Hunn, S. P. Withrow, C. W. White, R. E. Clausing, L. Heatherly, C. P. Christian, and N. R. Parikh, Nuc1. Instr. Meth. B 99, 602 (1995) https://doi.org/10.1016/0168-583X(94)00681-4
  13. T. W. Simpson, I.V. Mitchell, G. O. Este, and F. R. Shepherd, Nucl. Instr. Meth. B 148, 381 (1999) https://doi.org/10.1016/S0168-583X(98)00703-4
  14. C. H. Yun and N. W. Cheung, J. Microelectro- mechanical Systems 9, 474 (2000)
  15. G.D. Arrigo, S. Coffa, and C. Spinella, Sensors and Actuators A 3278, 1 (2002)
  16. S. Romani and J. H. Evans, Nucl. Instr. Meth. B 44, 313 (1990). https://doi.org/10.1016/0168-583X(90)90644-A
  17. H. Iwata, M. Takagi, Y. Tokuda, and T. Imura, J. Crystal Growth 210, 94 (2000) https://doi.org/10.1016/S0022-0248(99)00654-5
  18. C.G. Van de Walle, Phy. Rev. B 40, 4579 (1994)
  19. J. Wang, Q. Xiao, H. Yu, B. Shao, and A. Liu, Microelectronic Eng. 66, 314 (2003) https://doi.org/10.1016/S0167-9317(02)00924-3