Induction of Apoptotic Cell Death by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells

상황을 이용한 보건기능 개선제의 인체폐암세포 apoptosis 유발에 관한 연구

  • Park Cheol (Department of Biochemistry, Dongeui University) ;
  • Lee Yong Tae (Department of Physiology, Dongeui University) ;
  • Kang Kyung Hwa (Department of Physiology, Dongeui University) ;
  • choi Byung Tae (Department of Anatomy, Dongeui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Jeong Young Kee (Department of Microbiology. College of Natural Sciences, Dongeui University) ;
  • Choi Yung Hyun (Department of Biochemistry, Dongeui University)
  • 박철 (동의대학교 한의과대학 생화학교실) ;
  • 이용태 (동의대학교 한의과대학 생리학교실) ;
  • 강경화 (동의대학교 한의과대학 생리학교실) ;
  • 최병태 (동의대학교 해부학교실 및 한의학연구소) ;
  • 정영기 (동의대학교 자연과학대학 미생물학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Published : 2004.06.01

Abstract

In the present study, we investigated the effects of aqueous extract of the healthful decoction utilizing Phellinus linteus (HDPL) on the cell growth of human lung carcinoma tumor cell line A549. Exposure of A549 cells to HDPL resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometric analysis. This increase in apoptosis was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase (PARP), b-catenin and phospholipase C- 1 (PLC- 1) protein. HDPL treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, an anti-apoptotic gene, however, the level of Bax. a pro-apoptotic gene, was increased by HDPL treatment. In addition, HDPL-induced apoptotis of A549 cells was connected with activation of caspase-3 and caspase-9 protease in a dose-dependent manner, however, the levels of inhibitor of apoptosis proteins family were remained unchanged. Taken together, these results indicated that the anti-proliferative effects of HDPL were associated with the induction of apoptotic cell death through regulation of several major growth regulatory gene products such as Bcl-2 family expression and caspase protease activity, and HDPL may have therapeutic potential in human lung cancer.

Keywords

References

  1. Kor. J. Oriental Physiol. Pathol. v.18 The effects of healthful decoction utilizing Phellinus linteus in carbon tetrachloride-injected rats. Kang, K.H.;Lee, J.H.;Choi, Y.H.;Choi, B.T;Lee, Y.T.
  2. Kor. J. Oriental Physiol. Pathol. Down-regulation of COX-2 and hTERT expression by healthful decoction utilizing Phellinus linteus in human lung carcinoma cells Park, C.;Lee, Y.T.;Lee, S.H.;Jeong, Y.K.;Choi, B.T.;Choi, Y.H.
  3. especially Phellinus linteus. Gann v.59 Antitumor activity of some basidiomycetes. Ikekawa, T.;Nakanish, M.;Uehara, N.;Chihara, G.;Fukuoka, E.
  4. Carbohydr. Res. v.189 Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Kawagishi, H.;Inagaki, R.;Kanao, T.;Mizuno, T.
  5. Food Rev. Int. v.11 Agaricus blazei Murill: medicinal and dietry effects. Mizuno, T.;Kawariharatake
  6. Nippon Shokuhin Kagaku Kogaku Kaishi v.45 Tumoricidal activity of high molecular weight polysaccharides derived from Agaricus blazei via oral administration in the mouse tumor model. Fujimiya, Y.;Kobori, H.;Oshiman, K.;Soda, R.;Ebina, T.
  7. Kor. J. Oriental Physiol. Pathol. v.16 Study on antitumor and immunomodulatory effects of Cambodian Phellinus linteus. Lee, H.J.;Lee, H.J;Park, J.M.;Song, G.Y.;Kang, K.S.;Kim, S.H.
  8. Kor. J. Food Sci. Technol. v.32 In vitro and in vivo antitumor activity of the fruit body of Phellinus linteus. Lee, K.Y.;Han, M.J.;Park, S.Y.;Kim, D.H.
  9. Food Sci. Biotechnol. v.10 In vitro and in vivo antitumor activities of water extracts from Agaricus blazei Murill. Chun, H.S.;Choi, E.H.;Kim, H.J.;Choi, C.W.;Hwang, S.J.
  10. Carcinogenesis v.23 The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Cho, J.H.;Cho, S.D.;Hu, H.;Kim, S.H.;Lee, S.K.;Lee, Y.S.;Kang, K.S.
  11. J. Fd. Hyg. Safety v.13 Effects of artificially cultured Phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal $\beta$-glucocidases. Kim, D.H.;Choi, H.J.;Bae, E.A.
  12. Int. J. Immunopharm. v.18 Stimulation of hormoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Kim, H.M.;Han, S.B.;Oh, G.T.;Kim, Y.H.;Hong, D.H.;Hong, N.D.;Yoo, I.D.
  13. Kor. J. Food Sci. Technol. v.32 Antimutagenic and cytotoxicity effects of Agaricus blazei extracts. Ji, J.H.;Kim, M.N.;Choi, K.P.;Chung, C.K.;Ham, S.S.
  14. J. Kor. Soc. Food Sci. Nutr. v.29 Antimutagenic and cytotoxicity effects of Phellinus linteus extracts. Ji, J.H.;Kim, M.N.;Chung, C.K.;Ham, S.S.
  15. Arch. Pharm. Res. v.15 Immunostimulating activity of Phellinus linteus extracts to B-lymphocyte. Oh, G.T.;Han, S.B.;Kim, H.M.;Han, M.W.;Yoo, I.D.
  16. J. Applied Pharmacol. v.9 Effects of Phellinus linteus extracts on the hormonal immune response in normal and cyclophosphamide-treated mice. Pyo, M.Y.;Hyun, S.M.;Yang, K.S.
  17. Am. J. Pathol. v.136 Apoptosis. The role of the endonuclease. Arends, M.J.;Morris, R.G.;Wyllie, A.H.
  18. Cell Biol. Int. v.17 Multiple pathways to apoptosis. Evans, V.G.
  19. Science v.263 Premature p34cdc2 activation required for apoptosis. Shi, L.;Nishioka, W.K.;Th'ng, J.;Bradbury, E.M.;Litchfield, D.W.;Greenberg, A.H.
  20. Cell v.88 Apoptosis by death factor. Nagata, S.
  21. Cell. Mol. Biol. Res. v.40 Apoptosis and the cell cycle. Chiarugi, V.;Magnelli, L.;Basi, G.
  22. J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease. Choi, Y.H.;Lee, S.J.;Nguyen, P.;Jang, J.S.;Lee, J., Wu, M.L.;Takano, E.;Maki, M.;Henkart, P.A.;Trepel, J.B
  23. Int. J. Oncol. v.23 Induction of Bax and activation of caspases during $\beta$-sitosterol-mediated apoptosis in human colon cancer cells. Choi, Y.H.;Kong, K.R.;Kim, Y.A.;Jung, K.O.;Kil, J.H.;Rhee, S.H.;Park, K.Y.
  24. Cancer Metastasis. Rev. v.18 Cell adhesion molecules in the development and progression of malignant melanoma. Johnson, J.P.
  25. Br. J. Surg. v.87 E-cadherin-catenin cell-cell adhesion complex and human cancer. Wijnhoven, B.P.;Dinjens, W.N.;Pignatelli, M.
  26. Cell v.81 Yama/CPP32, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Tewari, M.;Quan, L.T.;O'Rourke, K.;Desnoyers, S.;Zeng, Z.;Beidler, D.R.;Poirier, G.G.;Salvesen, G.S.;Dixit, V.M.,
  27. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Miyashita, T.;Reed, J.C.
  28. Cell v.88 PI3K: downstream AKTion blocks apoptosis. Franke, T.F.;Kaplan, D.R.;Cantley, L.C.
  29. J. Biol. Chem. v.273 Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. Bae, Y.S.;Cantley, L.G.;Chen, C.S.;Kim, S.R.;Kwon, K.S.;Rhee, S.G.
  30. Nat. Rev. Mol. Cell Biol. v.3 IAP proteins: blocking the road to death's door. Salvesen, G.S.;Duckett, C.S.
  31. Apoptosis v.6 XIAP: apoptotic brake and promising therapeutic target. Holcik, M.;Gibson, H.;Korneluk, R.G.
  32. Pharmacol. Ther. v.92 The machinery of programmed cell death. Zimmermann, K.C.;Bonzon, C.;Green, D.R.
  33. Cancer Res. v.53 Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Kaufmann, S.H.;Desnoyers, S.;Ottaviano, Y.;Davidson, N.E.;Poirier, G.G.
  34. Nature v.371 Cleavage of poly ADP-ribose polymerase by a proteinase with properties like ICE. Lazebnik, Y.A.;Kaufmann, S.H.;Desnoyers, S.;Poirier, G.G.;Earnshaw, W.C.
  35. Int. J. Biochem. Cell. Biol. v.31 Apoptosis-associated cleavage of $\beta$-catenin in human colon cancer and rat hepatoma cells. Fukuda, K.
  36. Oncogene v.17 The inhibitors of apoptosis (IAPs) and their emerging role in cancer. LaCasse, E.C.;Baird, S.;Korneluk, R.G.;MacKenzie, A.E.
  37. Science v.244 Studies of inositol phospholipid-specific phospholipase C. Rhee, S.G.;Suh, P.G.;Ryu, S.H.;Lee, S.Y.
  38. Cancer Res. v.57 Overexpression of phospholipase C-1 in rat Chang, J.S.;Noh, D.Y.;Park, I.A.;Kim, M.J.;Song, H.;Ryu, S.H.;Suh, P.G.
  39. Exp. Hematol. v.30 Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Myklebust, J.H.;Blomhoff, H.K.;Rusten, L.S.;Stokke, T.;Smeland, E.B
  40. FASEB J. v.14 Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. Bae, S.S.;Perry, D.K., Oh, Y.S.;Choi, J.H.;Galadari, S.H.;Ghayur, T.;Ryu, S.H.;Hannun, Y.A.;Suh, P.G.
  41. Cell v.74 p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Lowe, S.W.;Ruley, H.E.;Jacks, T.;Housman, D.E.
  42. Nature v.391 Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Rosse, T.;Olivier, R.;Monney, L.;Rager, M.;Conus, S.;Fellay, I.;Jansen, B., Borner, C.
  43. Cell v.75 Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Hockenbery, D.M.;Oltvai, Z.N.;Yin, X.M.;Milliman, C.L.;Korsmeyer, S.J.
  44. Int. J. Oncol. v.17 Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells. Choi, Y.H.;Bae, J.H.;Yoo, M.A.;Chung, H.Y.;Kim, N.D.;Kim, K.W