Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho (Department of Pharmacology,MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea) ;
  • Choi, Se-Joon (Department of Pharmacology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Ki-Jung (Department of Pharmacology,MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea) ;
  • Cho, Hyeong-Seok (Department of Pharmacology,MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea) ;
  • Kim, Seong-Yun (Department of Pharmacology,MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea) ;
  • Sung, Ki-Wug (Department of Pharmacology,MRC for Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea)
  • Published : 2005.10.21

Abstract

Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Keywords

References

  1. Andersen PH, Gingrich JA, Bates MD, Dearry A, Falardeau P, Senogles SE, Caron MG. Dopamine receptor subtypes: beyond the $D_{1}/D_{2}$ classification. Trends Pharmacol Sci 11: 231-236, 1990 https://doi.org/10.1016/0165-6147(90)90249-8
  2. Andersen PH, Jansen JA. Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy. Eur J Pharmacol 188: 335- 347, 1990 https://doi.org/10.1016/0922-4106(90)90194-3
  3. Anderson WW, Collingridge GL. The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods 108: 71-83, 2001 https://doi.org/10.1016/S0165-0270(01)00374-0
  4. Calabresi P, Maj R, Mercuri NB, Bernardi G. Coactivation of $D_{1}$and $D_{2}$ dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 142: 95-99, 1992 https://doi.org/10.1016/0304-3940(92)90628-K
  5. Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13: 1071-1077, 2001 https://doi.org/10.1046/j.0953-816x.2001.01485.x
  6. Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 90: 9576-9580, 1993 https://doi.org/10.1073/pnas.90.20.9576
  7. Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS. Facilitated glutamatergic transmission in the striatum of $D_{2}$ dopamine receptor-deficient mice. J Neurophysiol 85: 659-670, 2001
  8. Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 20: 1-18, 1998 https://doi.org/10.1159/000017294
  9. Choi SJ, Chung WS, Kim KJ, Sung KW. Inhibitory modulation of 5-hydroxytryptanine on corticostriatal synaptic transmission in rat brain slice. Korean J Physiol Pharmacol 7: 295-301, 2003
  10. Flores G, Liang JJ, Sierra A, Martinez-Fong D, Quirion R, Aceves J, Srivastava LK. Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography. Neuroscience 91: 549-556, 1999 https://doi.org/10.1016/S0306-4522(98)00633-2
  11. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science 265: 1826-1831, 1994 https://doi.org/10.1126/science.7993484
  12. Groves PM. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res 286: 109-132, 1983
  13. Hsu KS, Huang CC, Yang CH, Gean PW. Presynaptic $D_{2}$ dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum. Brain Res 690: 264-268, 1995 https://doi.org/10.1016/0006-8993(95)00734-8
  14. Hu XT, White FJ. Dopamine enhances glutamate-induced excitation of rat striatal neurons by cooperative activation of $D_{1}$ and $D_{2}$ class receptors. Neurosci Lett 224: 61-65, 1997 https://doi.org/10.1016/S0304-3940(97)13443-7
  15. Ingham CA, Hood SH, Taggart P, Arbuthnott GW. Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 18: 4732-4743, 1998
  16. Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM. Building neural representations of habits. Science 286: 1745-1749, 1999 https://doi.org/10.1126/science.286.5445.1745
  17. Kawaguchi Y. Neostriatal cell subtypes and their functional roles. Neurosci Res 27: 1-8, 1997 https://doi.org/10.1016/S0168-0102(96)01134-0
  18. Levine MS, Li Z, Cepeda C, Cromwell HC and Altemus KL. Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 24: 65-78, 1996 https://doi.org/10.1002/syn.890240102
  19. Meshul CK, Allen C. Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6-OHDA lesion. Synapse 36: 129-142, 2000 https://doi.org/10.1002/(SICI)1098-2396(200005)36:2<129::AID-SYN6>3.0.CO;2-4
  20. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381-425, 1996 https://doi.org/10.1016/S0301-0082(96)00042-1
  21. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 78: 189-225, 1998
  22. Nicola SM, Malenka RC. Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 79: 1768-1776, 1998
  23. Pacheco-Cano MT, Bargas J, Hernandez-Lopez S, Tapia D, Galarraga E. Inhibitory action of dopamine involves a subthreshold Cs(+)-sensitive conductance in neostriatal neurons. Exp Brain Res 110: 205-211, 1996
  24. Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 15: 264-270, 1994 https://doi.org/10.1016/0165-6147(94)90323-9
  25. Sokoloff P, Schwartz JC. Novel dopamine receptors half a decade later. Trends Pharmacol Sci 16: 270-275, 1995 https://doi.org/10.1016/S0165-6147(00)89044-6
  26. Sung KW, Choi S, Lovinger DM. Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J Neurophysiol 86: 2405-2412, 2001
  27. Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 89: 10178-10182, 1992 https://doi.org/10.1073/pnas.89.21.10178
  28. Tang K, Low MJ, Grandy DK and Lovinger DM. Dopamine-dependent synaptic plasticity in striatum during in vivo development. Proc Natl Acad Sci USA 98: 1255-1260, 2001 https://doi.org/10.1073/pnas.031374698
  29. Umemiya M, Raymond LA. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J Neurophysiol 78: 1248-1255, 1997
  30. West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA. Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann N Y Acad Sci 1003: 53-74, 2003 https://doi.org/10.1196/annals.1300.004