The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism

에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성

  • Park, YoonKook (Department of Chemical System Engineering, Hongik University)
  • 박윤국 (홍익대학교 화학시스템공학과)
  • Received : 2006.03.30
  • Accepted : 2006.05.09
  • Published : 2006.06.10

Abstract

The keto-enol tautomeric equilibrium constant, K, of ethyl acetoacetate in compressed and supercritical carbon dioxide was determined by using FT-IR (Fourier transform infrared) spectroscopy at three different temperatures. In order to investigate the effect of solvent density, the $CO_{2}$ pressure was systematically changed at a constant temperature. As the $CO_{2}$ density is increased, the amount of keto tautomer is increased, causing the K value to decrease. The modified lattice fluid hydrogen bonding theory has been applied to investigate the effect of density on the K.

본 연구에서는 아임계 및 초임계 이산화탄소하의 에틸 아세토아세테이트의 케토-에놀 토토머릭 평형상수를 후리에 적외선 분광기를 이용하여 세 가지 다른 온도에서 측정하였다. 케토-에놀 토토머릭 평형상수의 용매에 대한 밀도 의존성을 연구하기 위하여 정온하에서 이산화탄소의 압력을 변화시켰다. 용매인 이산화탄소의 밀도를 증가 시키면, 케토 토토머의 양이 증가하게 되어 케토-에놀 토토머릭 평형상수값이 감소한다. 에틸 아세토아세테이트의 케토-에놀 토토머릭 평형상수의 밀도의존성을 연구하기 위하여 변형된 격자유체수소결합 모델을 적용하였다.

Keywords

Acknowledgement

Supported by : 미국과학재단

References

  1. P. W. Bell, A. J. Thote, Y. Park, R. B. Gupta, and C. B. Roberts, Ind. Eng. Chem. Res., 42, 6280 (2003) https://doi.org/10.1021/ie030169w
  2. T. Sarbu, T. Styranec, and E. J. Beckman, Nature, 405, 165 (2000) https://doi.org/10.1038/35012040
  3. P. Raveendran and S. L. Wallen, J. Am. Chem. Soc., 124, 7274 (2002) https://doi.org/10.1021/ja025508b
  4. J. Lu, B. Han, and H. Yan, Phys. Chem. Chem. Phys., 1, 3269 (1999) https://doi.org/10.1039/a901854i
  5. M. M. Folkendt, B. E. Weiss-Lopez, J. P. Chauvel, and N. S. True, J. Phys. Chem., 89, 3347 (1985) https://doi.org/10.1021/j100261a038
  6. S. G. Mills and P. Beak, J. Org. Chem., 1985. 50, 1216 (1985) https://doi.org/10.1021/jo00208a014
  7. J. Powling and H. J. Bernstein, J. Am. Chem. Soc., 73, 4353 (1951) https://doi.org/10.1021/ja01153a094
  8. M. M. Schiavoni, H. E. Di Loreto, A. Hermann, H.-G. Mack, S. E. Ulic, and C. O. Della Vedova, J. Raman Spectrosc., 32, 319 (2001) https://doi.org/10.1002/jrs.701
  9. M. C. Henry and C. R. Yonker, Anal. Chem., 76, 4684 (2004) https://doi.org/10.1021/ac049451i
  10. Y. Park and C. H. Turner, J. Supercrit. Fluids, 37, 201 (2006) https://doi.org/10.1016/j.supflu.2005.10.001
  11. Y. Park, R. B. Gupta, C. W. Curtis, and C. B. Roberts, J. Phys. Chem. B, 106, 9696 (2002) https://doi.org/10.1021/jp020447p
  12. Y. Fujii, H. Yamada, and M. Mizuta, J. Phys. Chem., 92, 6768 (1988) https://doi.org/10.1021/j100334a054
  13. http://webbook.nist.gov/chemistry/fluid/
  14. P. Raveendran and S. L. Wallen, J. Am. Chem. Soc., 124, 12590 (2002) https://doi.org/10.1021/ja0174635
  15. S. G. Kazarian, M. F. Vincent, F. V. Bright, C. L. Liotta, and C. A. Eckert, J. Am. Chem. Soc., 118, 1729 (1996) https://doi.org/10.1021/ja950416q
  16. R. B. Gupta, C. G. Panayiotou, I. C. Sanchez, and K. P. Johnston, AIChE J., 38, 1243 (1992) https://doi.org/10.1002/aic.690380811
  17. Y. Park, Ph.D. Dissertation, Auburn University, Auburn, AL, USA (2000)
  18. S. G. Kazarian, R. B. Gupta, M. J. Clarke, K. P. Johnston, and M. Poliakoff, J. Am. Chem. Soc., 115, 11099 (1993) https://doi.org/10.1021/ja00077a006
  19. R. B. Gupta and R. L. Brinkley, AIChE J, 44, 207 (1998) https://doi.org/10.1002/aic.690440122