Synthesis and Surface Activity of New Quaternary Ammonium Salts Prepared from 2-Chloromethyl-5-(2-Phenylthiazol-4-yl)-1,3,4-Oxadiazole

2-클로로메틸-5-(2-Phenylthiazol-4-yl)-1,3,4-옥사디아졸의 새로운 4급 암모늄염의 합성과 계면활성도

  • Bae, Sun Kun (School of Science and Technology, Kunsan National University) ;
  • Yeon, Young Heum (School of Science and Technology, Kunsan National University)
  • 배선건 (군산대학교 과학기술학부) ;
  • 연영흠 (군산대학교 과학기술학부)
  • Received : 2006.02.03
  • Accepted : 2006.04.26
  • Published : 2006.06.10

Abstract

New quaternary ammonium chlorides, [alkyldimethyl-[5-(2-phenylthiazol-4-yl]-1,3,4-oxadizol-2-ylmethyl]quaternary ammonium chlorides (ADOQACs): 6] were obtained with high yields by the reaction of compound 5 with N,N-dimethylalkyl amines in isopropyl alcohol. The structures and physical properties of the synthesized compounds were investigated and those surface-active properties were measured. The surface tension ($\gamma_{cmc}$) and the minimal inhibitory concentration (MIC) of compound 6 were found to be influenced by the number of alkyl chain carbon. Especially, compounds 6c and 6d exhibited high anti-bacterial activities and good surface-active properties.

새로운 4급 염화 암모늄염, {alkyldimethyl-[5-(2-phenylthiazol-4-yl]-1,3,4-oxadiazol-2-ylmethyl]quaternary ammonium chlorides (ADOQACs): 6}을 화합물 5와 몇 가지 N,N-dimethylalkyl amine을 반응시켜 합성하였다. 합성한 화합물들의 구조와 물리적 특성을 조사하였고 계면활성을 측정하였다. 화합물 6의 표면장력($\gamma_{cmc}$)과 최소저해농도(MIC)는 알킬기의 영향을 받은 것으로 나타났으며, 특히 화합물 6c와 6d가 좋은 항균력과 계면활성을 보였다.

Keywords

References

  1. F. Pochat, Synthesis Commun., 146 (1984)
  2. J. M. Kane and M. A. Stager, Synthetic Commun, 22, 1 (1992)
  3. S. Borg, G. Estenne-Bouhot, K. Luthman, and U. Hacksell, J. Org. Chem., 60, 3112 (1995) https://doi.org/10.1021/jo00115a029
  4. H. M. Abdel-Bay, Afindad, LV, 473, 67 (1995)
  5. I. I. Ismail, A. H. A. EI-Aleem, and A. M. Hossny, Afinidad. LVII, 487, 217 (2000)
  6. N. A. Mohamad and E. I. Al-afaleg, Polymer, 40, 17 (1999)
  7. S. W. Kim, S. C. Shin, B.-J. Jung, and H.-K. Shim, Polymer, 43, 4297 (2002) https://doi.org/10.1016/S0032-3861(02)00252-5
  8. W. Shi, X. Qian, G. Song, R. Zhang, and R. Li, J. Fluorine Chem., 106, 173 (2000) https://doi.org/10.1016/S0022-1139(00)00323-7
  9. K. M. L. Rai and N. Liganna, IL Farmaco, 55, 389 (2000) https://doi.org/10.1016/S0014-827X(00)00056-2
  10. A. Kocabalkani, A. Oznur, and O. Gulten, IL Paraco, 56, 975 (2000)
  11. S. Cao, X. Qian, G. Song, and Q. Huang, J. Fluorine Chem., 117, 63 (2002) https://doi.org/10.1016/S0022-1139(02)00172-0
  12. C. Zhang, X. Shen, and H. Gao, Chem. Phys. lett., 363, 515 (2002) https://doi.org/10.1016/S0009-2614(02)01206-X
  13. H. Tong, G. Zhou, L. Wang, X. Jing, F. Wang, and J. Zhang, Tetrahedron Lett., 44, 131 (2003) https://doi.org/10.1016/S0040-4039(02)02504-2
  14. S. G. Kucukguzel, E. E. Qruc, S. Rollas, F. Sahin, and A. Ozbek, Eur. J. Med. Chem., 37, 197 (2002) https://doi.org/10.1016/S0223-5234(01)01326-5
  15. G. Sahin. E. Palaska, M. Ekizoglu, and M. Ozalp, IL Farmaco, 67, 539 (2002)
  16. E. Palaska, G. Sahin, P. Kelicen, N. T. Durlu, and G. Aleinok, IL Farmaco, 57, 101 (2002) https://doi.org/10.1016/S0014-827X(01)01176-4
  17. V. Jakubkiene, M. M. Burbuliene, G. Mekuskiene, E. Urdenaite, P. Gaidelis, and P. Vainilavicius, IL Farmaco, 58, 323 (2003) https://doi.org/10.1016/S0014-827X(02)00022-8
  18. A. Almasirad, S. A. Tabatabi, M. Faizi, A. Kerriaeezadeh, N. Mehrabi, A. Dalvandi, and A. Shafiee, Bioorg. Med. Chem., 14, 6057 (2004) https://doi.org/10.1016/j.bmcl.2004.09.072
  19. D. J. Qu, D. W. Lee, M. G. Newton, and C. K. Chu, Tetrahedron Lett., 36, 8167 (1995)
  20. X. Zheng, Z. Li, Y. Wang, W. Chen, Q. Huang, C. Liu, and G. Song, J. Fluorine Chem., 123, 163 (2003) https://doi.org/10.1016/S0022-1139(03)00168-4