DOI QR코드

DOI QR Code

Thermal Properties of Poly($\varepsilon$-Caprolactone)/Multiwalled Carbon Nanotubes Composites

  • Kim, Hun-Sik (Department of Polymer Science and Engineering, Inha University) ;
  • Chae, Yun-Seok (Department of Polymer Science and Engineering, Inha University) ;
  • Choi, Jae-Hoon (Department of Polymer Science and Engineering, Inha University) ;
  • Yoon, Jin-San (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • Published : 2008.06.01

Abstract

In this study, multiwalled carbon nanotubes (MWCNTs) were compounded with the poly($\varepsilon$-caprolactone) (PCL) matrix at the solution state using chloroform. For homogeneous dispersion of MWCNTs in polymer matrix, oxygen-containing groups were introduced on the surface of MWCNTs. The mechanical properties of the PCL/MWCNTs composites were effectively increased due to the incorporation of MWCNTs. The composites were characterized using scanning electron microscopy in order to obtain information on the dispersion of MWCNT in the polymeric matrix. In case of 1.2 wt% of MWCNTs in the matrix, strength and modulus of the composite increased by 12.1% and 164.3%, respectively. In addition, the dispersion of MWCNTs in the PCL matrix resulted in substantial decrease of the electrical resistivity of the composites as the MWCNTs loading was increased from 0 to 2.0 wt%. Furthermore, thermal stability of the PCL and PCL/MWCNTs-COOH composites were investigated using the data acquired from the thermogravimetric analysis. The detailed kinetics of the thermal degradation of the composites was investigated by analyzing their thermal behavior at different heating rates in a nitrogen atmosphere. Activation energy of thermal degradation was determined by using the equations proposed by Kissinger and Flynn-Wall-Ozawa. The apparent activation energy of PCL/MWCNTs-COOH composite was considerably higher than that of neat PCL.

Keywords

References

  1. Y. Ikada and H. Tsuji, Macromol. Rapid Commun. 21, 117-132 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  2. M. Malinconico, B. Immirzi, S. Massenti, F. P. La Mantia, P. Mormile and L. Petti, J. Mater. Sci. 37, 4973-4978 (2002) https://doi.org/10.1023/A:1021058810774
  3. R. A. Jain, Biomaterials 21, 2475-2490 (2000) https://doi.org/10.1016/S0142-9612(00)00115-0
  4. H. J. Jin, M. O. Hwang, J. S. Yoon, K. H. Lee, I. J. Chin and M. N. Kim, Macromol. Res. 13, 73-79 (2005) https://doi.org/10.1007/BF03219018
  5. M. S. Taylor, A. U. Daniels, K. P. Andriano and J. Heller, J. Appl. Biomater. 5, 151-157 (1994) https://doi.org/10.1002/jab.770050208
  6. T. G. Park, S. Cohen and R. Langer, Macromolecules 25, 116-122 (1992) https://doi.org/10.1021/ma00027a019
  7. S. R. C. Vivekchand, L. Sudheendra, M. Sandeep, A. Govindaraj and C. N. R. J. Rao, Nanosci. Nanotechnol. 2, 631-651 (2002) https://doi.org/10.1166/jnn.2002.154
  8. G. X. Chen, H. S. Kim, B. H. Park and J. S. Yoon, Polymer 47, 4760-4767 (2006) https://doi.org/10.1016/j.polymer.2006.04.020
  9. M. Kang, S. J. Myung and H. J. Jin, Polymer 47, 3961-3966 (2005) https://doi.org/10.1016/j.polymer.2006.03.073
  10. G. X. Chen, H. S. Kim, B. H. Park and J. S. Yoon, Carbon 44, 3348-3352 (2006) https://doi.org/10.1016/j.carbon.2006.09.010
  11. S. R. C. Vivekchand, L. Sudheendra, M. Sandeep, A. Govindaraj and C. N. R. J. Rao, Nanosci. Nanotechnol. 2, 631-635 (2002) https://doi.org/10.1166/jnn.2002.154
  12. P. Potschke, A. R. Bhattacharyya and A. Janke, Polymer 44, 8061-8069 (2003) https://doi.org/10.1016/j.polymer.2003.10.003
  13. C. Wei, D. Srivastava and K. Cho, Nano Lett. 2, 647 (2002) https://doi.org/10.1021/nl025554+
  14. H. S. Kim, B. H. Park, J. S. Yoon and H. J. Jin, Eur. Polym. J. 43, 1729-1735 (2007) https://doi.org/10.1016/j.eurpolymj.2007.02.025
  15. G. Sivalingam, S. P. Vijayalakshmi and G. Madras, Indian Engng Chem. Res. 43, 7702-7709 (2004) https://doi.org/10.1021/ie049589r
  16. H. Kong, C. Gao and D. Yan, Macromolecules 37, 4022-4030 (2004) https://doi.org/10.1021/ma049694c
  17. H. S. Kim, B. H. Park, J. S. Yoon and H. J. Jin, Key Engng Mater. 326-328, 1785-1788 (2006) https://doi.org/10.4028/www.scientific.net/KEM.326-328.1785
  18. J. Gao, M. E. Itkis, A. Yu, E. Bekyarova, B. Zhao and R. C. Haddon, J. Amer. Chem. Soc. 127, 3847-3854 (2005) https://doi.org/10.1021/ja0446193
  19. H. E. Kissinger, Anal. Chem. 29, 1702-1706 (1957) https://doi.org/10.1021/ac60131a045
  20. T. Ozawa, Bull. Chem. Soc. Japan 38, 1881-1886 (1965) https://doi.org/10.1246/bcsj.38.1881
  21. J. H. Flynn and L. A. Wall, J. Polym. Sci. Part B, Polym. Letts 4, 323-328 (1966) https://doi.org/10.1002/pol.1966.110040504