DOI QR코드

DOI QR Code

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E. (Department of Materials Science and Engineering, University of Ioannina, University Campus)
  • Published : 2008.03.01

Abstract

Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Keywords

References

  1. M. J. Iremonger and W. G. Wood, Plastic flow and failure of discontinuous-fibre composite materials, J. Strain Anal. 5, 212-222 (1970) https://doi.org/10.1243/03093247V053212
  2. A. S. Carrara and F. J. McGarry, Matrix and interface stresses in a discontinuous fiber composite model, J. Compos. Mater. 2, 222-243 (1968) https://doi.org/10.1177/002199836800200208
  3. A. Kelly and W. R. Tyson, Tensile properties of fiber-reinforced metals: copper/tungsten and copper/ molybdenum, J. Mech. Phys. Solids 3, 329-350 (1965)
  4. J.-P. Favre and D. Jacques, Stress transfer in carbon fibre model composites, J. Mater. Sci. 25, 1373-1380 (1990) https://doi.org/10.1007/BF00585453
  5. M. C. Waterbury and L. T. Drzal, On the determination of fiber strengths by in-situ fiber strength testing, J. Compos. Tech. Res. 13, 22-28 (1991) https://doi.org/10.1520/CTR10070J
  6. M. Narkis, E. J. H. Chen and R. B. Pipes, Review of methods for characterization of interfacial fiber-matrix interactions, Polym. Compos. 9, 245-251 (1988) https://doi.org/10.1002/pc.750090402
  7. R. B. Henstenburg and S. L. Phoenix, Interfacial shear strength studies using the single-filamentcomposite test. Part II: A probability model and Monte Carlo simulation, Polym. Compos. 10, 389-408 (1989) https://doi.org/10.1002/pc.750100603
  8. L. T. Drzal, M. Rich and P. Lloyd, Adhesion of graphite fibers to epoxy matrices. I. The role of fiber surface treatment, J. Adhesion 16, 1-30 (1983) https://doi.org/10.1080/00218468308074901
  9. W. A. Fraser, F. H. Ancker, A. T. DiBenedetto and B. Elbirli, Evaluation of surface treatments for fibers in composite materials, Polym. Compos. 4, 238-248 (1983) https://doi.org/10.1002/pc.750040409
  10. A. N. Netravali, R. B. Henstenburg, S. L. Phoenix and P. Schwartz, Interfacial shear strength studies using the single-filament-composite test. Part I: Experiments on graphite fibers in epoxy, Polym. Compos. 10, 226-241 (1989) https://doi.org/10.1002/pc.750100405
  11. F. G. Torres and M. L. Cubillas, Study of the interfacial properties of natural fibre reinforced polyethylene, Polymer Testing 24, 694-698 (2005) https://doi.org/10.1016/j.polymertesting.2005.05.004
  12. X.-M. Li, J.-H. Wang, G.-Q. Gao and W. Feng, Study on the interfacial adhesion conditions by single-fiber composite fragmentation test, Wuhan Ligong Daxue Xuebao/J. Wuhan University of Technology 27, 9-12 (2005)
  13. S. Ochiai and K. Osamura, Multiple fracture of a fibre in a single tungsten fibre-copper matrix composite, Z. Metallkd. 77, 255-259 (1986)
  14. I. Roman and R. Aharonov, Mechanical interrogation of interfaces in monofilament model composites of continuous SiC fiber-aluminum matrix, Acta Metall. Mater. 40, 477-485 (1992) https://doi.org/10.1016/0956-7151(92)90396-V
  15. L. Molliex, J.-P. Favre, A. Vassel and M. Rabinovitch, Interface contribution to the SiC-titanium and SiC-aluminium tensile strength prediction, J. Mater. Sci. 29, 6033-6040 (1994) https://doi.org/10.1007/BF00366890
  16. R. B. Clough, F. S. Biancaniello, H. N. G. Wadley and U. R. Kattner, Fiber and interface fracture in single crystal aluminum/SiC fiber composites, Metall. Trans. 21A, 2747-2757 (1990)
  17. J.-L. Houpert, S. L. Phoenix and R. Raj, Analysis of the single-fiber-composite test to measure the mechanical properties of metal-ceramic interfaces, Acta Metall. Mater. 42, 4177-4187 (1994) https://doi.org/10.1016/0956-7151(94)90194-5
  18. A. Vassel, M. C. Merienne, F. Pautonnier, L. Molliex and J.-P. Favre, A method to evaluate the bonding between fibre and matrix in Ti-base composite, in: Proc. 6th World Conference on Titanium, P. Lacombe, R. Tricot and G. Beranger (Eds), pp. 919-923. Les Editions de Physique, Les Ulis Cedex, France (1988)
  19. Y. Le Petitcorps, R. Pailler and R. Naslain, The fibre/matrix interfacial shear strength in titanium alloy matrix composites reinforced by silicon carbide or boron CVD filaments, Compos. Sci. Technol. 35, 207-214 (1989) https://doi.org/10.1016/0266-3538(89)90096-1
  20. J.-P. Favre, A. Vassel and C. Laclau, Testing of SiC/titanium composites by fragmentation and push-out tests: comparison and discussion of test data, Composites 25, 482-487 (1994) https://doi.org/10.1016/0010-4361(94)90173-2
  21. M. Preuss, G. Rauchs, P. J. Withers, E. Maire and J.-Y. Buffiere, Interfacial shear strength of Ti/SiC fibre composites measured by synchrotron strain measurement, Composites, Part A 33, 1381-1385 (2002) https://doi.org/10.1016/S1359-835X(02)00152-5
  22. S. Krishnamurthy, T. E. Matikas, P. Karpur and D. B. Miracle, Ultrasonic evaluation of the processing of fiber-reinforced metal-matrix composites, Compos. Sci. Technol. 54, 161-168 (1995) https://doi.org/10.1016/0266-3538(95)00046-1
  23. M. C. Waterbury, P. Karpur, T. E. Matikas, S. Krishnamurthy and D. B. Miracle, In situ observation of the single fiber fragmentation process in metal matrix composites by ultrasonic imaging, Compos. Sci. Technol. 52, 261-266 (1994) https://doi.org/10.1016/0266-3538(94)90211-9