DOI QR코드

DOI QR Code

Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester Composites

  • Shaktawat, Vinodini (Semiconductor and Polymer Science Laboratory, Department of Physics, University of Rajasthan) ;
  • Pothan, Laly A. (Department of Chemistry, Bishop Moore College) ;
  • Saxena, N.S. (Semiconductor and Polymer Science Laboratory, Department of Physics, University of Rajasthan) ;
  • Sharma, Kananbala (Semiconductor and Polymer Science Laboratory, Department of Physics, University of Rajasthan) ;
  • Sharma, T.P. (Semiconductor and Polymer Science Laboratory, Department of Physics, University of Rajasthan)
  • Published : 2008.03.01

Abstract

Using a Dynamic Mechanical Analyzer (DMA), mechanical properties like modulus and phase transition temperature of polyester composites of banana fibers (treated and untreated) are measured simultaneously. The shifting of phase transition temperature is observed in some treatments. The performance of the composite depends to a large extent on the adhesion between polymer matrix and the reinforcement. This is often achieved by surface modification of the matrix or the filler. Banana fiber was modified chemically to achieve improved interfacial interaction between the fiber and the polyester matrix. Various silanes and alkalies were used to modify the fiber surface. Chemical modification was found to have a profound effect on the fiber/matrix interaction, which is evident from the values of phase transition temperatures. Of the various chemical treatments, simple alkali treatment with 1% NaOH was found to be the most effective.

Keywords

References

  1. L. A. Pothan, Y. Zimmermann, S. Spange and S. Thomas, J. Polym. Sci.: Part B Polym. Phys. 38, 2546 (2000) https://doi.org/10.1002/1099-0488(20001001)38:19<2546::AID-POLB60>3.0.CO;2-W
  2. K. G. Satyanarayana, A. G. Kulkarni and P. K. Rohatgi, J. Sci. Ind. Res. 40, 222 (1981)
  3. N. Chand and P. K. Rohatgi, Polym. Comm. 27, 157 (1986)
  4. F. W. Billmeyer, Textbook of Polymer Science. Wiley-Interscience, New York, USA (1984)
  5. S. Maharana, S. B. Mishra and S. S. Tripathy, J. Appl. Polym. Sci. 40, 345 (1990) https://doi.org/10.1002/app.1990.070400304
  6. M. Miwa, A. Na Kayama, T. Ohsawa and A. A. Hasegawa, J. Appl. Polym. Sci. 23, 2957 (1979) https://doi.org/10.1002/app.1979.070231015
  7. H. T. Hahn, K. L. Jerina and P. Burrett, in: Advances in Thermo Plastic Matrix Components Materials, G. M. Alewaz (Ed.), p. 183. ASTM, STP 1044 (1987)
  8. R. B. Seymour, Astr. Past. Rubber 30, 10 (1979)
  9. L. A. Pothan, S. Thomas and N. R. Neelakantan, J. Reinf. Plast. Compos. 16, 744 (1997) https://doi.org/10.1177/073168449701600806
  10. L. A. Pothan, P. Potschke, R. Habler and S. Thomas, J. Compos. Mater. 39, 1007 (2005) https://doi.org/10.1177/0021998305048737
  11. R. Agarwal, N. S. Saxena, K. Sharma, S. Thomas and L. A. Pothan, Ind. J. Pure Appl. Phys. 44, 746 (2006)
  12. T. Reymond, High Temps. High Press. 15, 299 (1983)
  13. K. Menard, Dynamic Mechanical Analysis: A Practical Introduction, Chapters 4 and 5, pp. 61-64 and 94-100. CRC Press, Boca Raton, FL, USA (1999)
  14. M. S. Sreekala, M. G. Kumaran, S. Joseph, M. Jacob and S. Thomas, Appl. Compos. Mater. 7, 295 (2000) https://doi.org/10.1023/A:1026534006291
  15. R. Agrawal, Characterization and thermal properties of some polymers, PhD Thesis, India (1999)
  16. R. Agrawal, Study of thermo-physical properties of fiber reinforced polymers, PhD Thesis, India (2002)
  17. D. S. Verma, M. Verma and I. K. Verma, Test. Res. Inst. 34, 348 (1984)
  18. K. Grundke, H. J. Jacobasch, F. Simon and S. T. Schneider, Physicochemical properties of surfacemodified polymers, in: Polymer Surface Modification: Relevance to Adhesion, K. L. Mittal (Ed.), pp. 431-454. VSP, Utrecht, The Netherlands (1995)
  19. K. Mittal (Ed.), Acid-Base Interactions: Relevance to Adhesion Science and Technology, Vol. 2. VSP, Utrecht, The Netherlands (2000)