Anti-allergic Effect of Seungmagalgeun-tang through Suppression of NF-${\kappa}B$ and p38 Mitogen-Activated Protein Kinase Activation in the RBL-2H3 Cells

  • Lyu, Ji-Hyo (Clinical Research Center of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Lyu, Sun-Ae (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Yoon, Hwa-Jung (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University) ;
  • Ko, Woo-Shin (Department of Oriental Medicine, College of Oriental Medicine, Dongeui University)
  • 발행 : 2008.12.25

초록

In previous report, Seungmagalgeun-tang (SGT) could exert its anti-inflammatory actions in the BV-2 microglial cells. However, study on the anti-inflammatory effect of SGT in mast cells has not been identified. Therefore, we examined on the anti-inflammatory effect of SGT on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced rat basophilic leukemia (RBL-2H3) cells. SGT inhibited the release of ${\beta}$-hexosaminidase and secretion and expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-4 on RBL-2H3 cells, without affecting cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus by SGT. In addition, SGT suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of p38 mitogen-activated protein kinase (MAPK), and the expressions of cyclooxygenase (COX)-2 mRNA and protein level in RBL-2H3 cells. These results suggest that SGT could be involved anti-allergic effect by control of NF-${\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of COX-2 expression.

키워드

참고문헌

  1. Heo, J. DongEuiBoGam. Bub, Seoul. in press, p 731, 937, 1999.
  2. Lyu, S.A., Lee, S.Y., Lee, S.J., Son, S.W., Kim, M.O., Kim, G.Y., Kim, Y.H., Yoon, H.J., Kim, H., Park, D.I., Ko, W.S. Seungma-galgeun-tang attenuates proinflammatory activities through the inhibition of NF-$\kappaB$ signal pathway in the BV-2 microglial cells. J Ethnopharm. 107: 59-66, 2006. https://doi.org/10.1016/j.jep.2006.02.002
  3. Kim, H.M. Antiallergy drugs form oriental medicines. Int J Orient Med. 1: 1-7, 2000.
  4. Burd, P.R., Rogers, H.W., Gordon, J.R., Martin, C.A., Jayaraman, S., Wilson, S.D., Dvorak, A.M., Galli, S.J., Dorf, M.E. Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med. 170: 245-257, 1989. https://doi.org/10.1084/jem.170.1.245
  5. Plaut, M., Pierce, J.H., Watson, C.J., Hanley-Hyde, J., Nordan, R.P., Paul, W.E. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature. 339: 64-67, 1989. https://doi.org/10.1038/339064a0
  6. Bradding, P., Feather, I.H., Wilson, S., Bardin, P.G., Heusser, C.H., Holgate, S.T., Howarth, P.H. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cells as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol. 151: 3853-3865, 1993.
  7. Schwartz, L.B., Lewis, R.A., Seldin, D., Austen, K.F. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 126: 1290-1294, 1981.
  8. Kim, H.M., Lee, Y.M. Role of TGF-beta 1 on the IgE-dependent anaphylaxis reaction. J Immunol. 162: 4960-4965, 1999.
  9. Jeong, H.J., Koo, H.N., Na, H.J., Kim, M.S., Hong, S.H., Eom, J.W., Kim, K.S., Shin, T.Y., Kim, H.M. Inhibition of TNF-$\alpha$ and IL-6 production by aucubin through blockade of NF-$\kappaB$ activation in RBL-2H3 mast cells. Cytokines 18(5):252-259, 2002. https://doi.org/10.1006/cyto.2002.0894
  10. Weiss, D.L. and Brown, M.A. Regulation of IL-4 production in mast cell: a paradigm for cell-type-specific gene expression. Immunol Rev. 179: 35-47, 2001. https://doi.org/10.1034/j.1600-065X.2001.790104.x
  11. Gregory D. Gregory, Shveta S. Raju, Susan Winandy, Melissa A. Brown. Mast cell IL-4 expression is regulated by lkaros and influences encephalitogenic Th1 responces in EAE. J Clin Invest. 116(5):1327-1336, 2006. https://doi.org/10.1172/JCI27227
  12. Moon, P.D., Lee, B.H., Jeong, H.J., An, H.J., Park, S.J., Kim, H.R., Ko, S.G.., Um, J.Y., Hong, S.H., Kim, H.M. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the $I\kappaB/NF-\kappaB$signal cascade in the human mast cell line HMC-1. European Journal of Pharmacology 555: 218-225, 2007. https://doi.org/10.1016/j.ejphar.2006.10.021
  13. Hundley Thomas R., Anjana R. Prasad, Michael A. Beaven. Elevated levels of cyclooxygenase-2 in antigen-stimulated mast cells is associated with minimal activation of p38 mitogen-activated protein kinase. J Immunol. 167: 1629-1636, 2001. https://doi.org/10.4049/jimmunol.167.3.1629
  14. Azzolian, A., Bongiovanni, A., Lampiasi, N. Substance P induces TNF-alpha and IL-6 production through NF kappa B in peritoneal mast cells. Biochim Biophys Acta. 1643: 75-83, 2003. https://doi.org/10.1016/j.bbamcr.2003.09.003
  15. Kim, S.H., Jun, C.D., Suk, K.H., Choi, B.J., Lim, H.J., Park, S.J., Lee, S.H., Shin, H.Y., Kim, D.K., Shin, T.Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences 91(1):123-131, 2006. https://doi.org/10.1093/toxsci/kfj063
  16. Guan, Z., Buckman, S.Y., Pentland, A.P., Templeton, D.J., Morrison, A.R. Induction of cyclooxygenase-2 by the activated MEKK1$\rightarrow$SEK1/MKK4$\rightarrow$p38 mitogen-activated protein kinase pathway. J Biol Chem. 274: 12901-12908, 1998.
  17. Skehan, P. Assays of cell growth and cytotoxicity. In: Studzinski, G.P. (Ed.), Cell Growth and Apoptosis. Oxford University press, New York, p 180, 1998.
  18. Schwartz, L.B., Austen, K.F., Wasserman, S.I. Immunologic release of $\beta$-hexosaminidase from purified rat serosal mast cells. J Immunol. 123: 1445-1450, 1979
  19. Steven, R.L. and Austen, K.F. Recent advance in the cellular and molecular biology of mast cells. Immunol Today. 10: 381-385, 1989. https://doi.org/10.1016/0167-5699(89)90272-7
  20. Galli, S.J., Gordon, J.R. Wershil, B.K., 1991. Cytokine production by mast cells and basophils. Curr Opin Immunol. 3: 865-872, 1991. https://doi.org/10.1016/S0952-7915(05)80005-6
  21. Cheong, H., Choi, E.J., Yoo, G.S., Kim, K.M., Ryu, D.Y. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 64(6):577-588, 1998. https://doi.org/10.1055/s-2006-957520
  22. Kimata, M., Inagaki, N., Nagai, H. Effects of luteolin and other flavonoids on IgE-mediated allergic reactions. Planta Med. 66(1):25-29, 2000. https://doi.org/10.1055/s-2000-11107
  23. Christman, J.W., Sadikot, R.T., Blackwell, T.S. The role of nuclear factor-kappa B in pulmonary diseases. Chest. 117: 1482-1487, 2000. https://doi.org/10.1378/chest.117.5.1482
  24. Sarkar, A., Sreenivasan, Y., Manna, S.K. $\alpha$-Melanocyte- stimulating hormone induces cell death in mast cells : involvement of NF-$\kappaB$. FEBS Lett. 549: 87-93, 2003. https://doi.org/10.1016/S0014-5793(03)00797-X
  25. Karin, M. and Ben-Neriah, Y. Phosphorylation meets ubiquitnation: the control of NF-[kappa] B activity. Annu Rev Immunol. 18: 621-663, 2000. https://doi.org/10.1146/annurev.immunol.18.1.621
  26. Minghetti, L. Cyclooxygenase-2 (COX-2) in Inflammatory and Degenerative Brain Diseases. J Neuropathol Exp Neurol. 63(9):901-910, 2004. https://doi.org/10.1093/jnen/63.9.901
  27. Hou R.C., Chen, Y.S., Huang, J.R., Jeng, K.G. Cross-linked bromelain inhibits lipopolysaccharide-induced cytokine production involving cellular signaling suppression in rats. J Agric Food Chem. 54(6):2193-2198, 2006. https://doi.org/10.1021/jf052390k
  28. Adwanikar, H., Karim, F., Gereau, R.W. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain. 111: 125-135, 2004. https://doi.org/10.1016/j.pain.2004.06.009