Thermal Degradation of High Molecular Components Obtained from Pyrolysis of Mixed Waste Plastics

혼합폐플라스틱의 열분해로부터 생성된 고분자성분의 열적분해

  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University) ;
  • Ryu, Jae Hun (Department of Chemical Engineering, Hanyang University) ;
  • Kwak, Hyun (Department of Chemical Engineering, Hanyang University) ;
  • Bae, Seong-Youl (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Kyong-Hwan (Department of Energy Conversion Technology, KIER)
  • 오세천 (공주대학교 환경공학과) ;
  • 류재훈 (한양대학교 화학공학과) ;
  • 곽현 (한양대학교 화학공학과) ;
  • 배성열 (한양대학교 화학공학과) ;
  • 이경환 (한국에너지기술연구원 에너지전환연구부)
  • Received : 2007.12.31
  • Accepted : 2008.03.07
  • Published : 2008.04.10

Abstract

The thermal degradation characteristics of high molecular components obtained from pyrolysis of mixed waste plastics have been studied by thermogravimetric analysis (TGA) and gas chromatography spectrometry (GC-MS). The kinetics of thermal degradation has been studied by a conventional nonisothermal thermogravimetric technique at several heating rates between 10 and $50^{\circ}C/min$. The dynamic thermogravimetric analysis curve and its derivative have been analyzed using a variety of analytical methods reported in the literature to obtain information on the kinetic parameters such as activation energies and reaction orders. The yields of liquid products have been monitored by batch pyrolysis reactor under various reaction temperatures and reaction times. And the characteristic of liquid products with the increase in reaction temperature has been performed by GC-MS.

혼합폐플라스틱의 열분해로부터 얻어진 고분자성분의 열적분해 특성에 대한 연구를 TGA와 GC-MS를 이용하여 수행하였다. 열적분해의 속도론적 연구는 $10{\sim}50^{\circ}C/min$ 사이의 여러 가열속도에서 비등온 질량감소 기술을 이용하여 수행하였으며 활성화 에너지 및 반응차수 등과 같은 속도 상수들에 대한 정보를 얻기 위하여 문헌에 제시된 여러 가지의 속도론 해석 방법을 이용하여 질량감소 곡선 및 그 미분 값을 해석하였다. 또한 회분식 열분해 반응기를 이용하여 반응온도 및 반응시간에 따른 액상 생성물의 수율변화를 고찰하였으며 GC-MS를 이용하여 반응온도의 증가에 따른 액상 생성물의 특성연구를 수행하였다.

Keywords

References

  1. F. P. Eng and H. Ishida, J. Appl. Polym. Sci., 32, 5021 (1986) https://doi.org/10.1002/app.1986.070320523
  2. F. E. Okiemen and J. E. Ebhoaye, J. Appl. Polym. Sci., 48, 1853 (1993) https://doi.org/10.1002/app.1993.070481019
  3. H. C. Jun, S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, J. Ind. Eng. Chem., 5, 143 (1999) https://doi.org/10.1021/ie50050a015
  4. H. T. Kim and S. C. Oh, J. Ind. Eng. Chem., 11, 648 (2005) https://doi.org/10.1021/ie50115a012
  5. S. C. Oh, News & Information for Chemical Engineers, 24, 18 (2006)
  6. E. S. Freeman and B. Carroll, J. Phys. Chem., 62, 394 (1958) https://doi.org/10.1021/j150562a003
  7. H. L. Friedman, J. Polym. Sci., Part C, 6, 183 (1964)
  8. A. W. Coat and J. P. Redfern, Nature, 201, 68 (1964) https://doi.org/10.1038/201068a0
  9. T. Ozawa, Bull. Chem. Soc. Jpn., 38, 1881 (1965) https://doi.org/10.1246/bcsj.38.1881
  10. J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Standards-A. Physics and Chemistry, 70A, 487 (1966) https://doi.org/10.6028/jres.070A.043
  11. J. D. Cooney, M. Day, and D. M. Wiles, J. Appl. Polym. Sci., 28, 2887 (1983) https://doi.org/10.1002/app.1983.070280918
  12. A. Jimenez, V. Berenguer, J. Lopez, and A. Sanchez, J. Appl. Polym. Sci., 50, 1565 (1993) https://doi.org/10.1002/app.1993.070500910
  13. S. S. Kim, W. L. Yun, and S. U. Kim, J. Korea Solid Wastes Engineering Society, 15, 685 (1998)
  14. S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, Korean J. Chem. Eng., 16, 543 (1999) https://doi.org/10.1007/BF02698282