Degradation Properties and Production of Fuels from Hemicellulose by Pyrolysis-liquefaction

열분해액화반응에 의한 헤미셀룰로오스의 분해특성 및 연료물질 생성

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2008.01.14
  • Accepted : 2008.03.01
  • Published : 2008.04.10

Abstract

Hemicellulose, consisteing of pentose as xylose and mannose, is usable as high octane fuels and heavy oil additives if depolymerized to monomer unit. In this study, thermochemical degradation by pyrolysis-liquefaction of hemicellulose, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperatures from $200^{\circ}C$ to $400^{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. Ketones, as 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, and 2-methyl-cyclopentanone, could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels. Combustion heating value of liquid products obtained from thermochemical conversion processes of hemicellulose was in the range of 6,680~7,170 cal/g. After 40 min of reaction at $400^{\circ}C$ in pyrolysis-liquefaction of hemicellulose, the energy yield and mass yield were as high as 72.2% and 41.2 g oil/100 g raw material, respectively.

헤미셀룰로오스는 자일로스(xylose)와 만노스(mannose)와 같은 5당류(pentose)로 이루어져 있기 때문에 분해하면 고옥탄가의 연료 물질이나 연료첨가제로서 사용할 수 있는 가능성이 높다. 본 연구에서는 헤미셀룰로오스의 열화학적 전환방법으로 열분해 액화반응을 실시하여 반응온도의 영향, 전환율, 분해특성, 분해생성물질 및 에너지효율 등을 조사하였다. 실험은 튜브반응기로 반응시간 40 min에서 반응온도 $200{\sim}400^{\circ}C$로 변화시켜 가면서 수행하였다. 헤미셀룰로오스의 열분해 액화반응에 의해 생성된 액체 생성물은 주로 케톤류가 많았으며, 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, 2-methyl-cyclopentanone과 같은 케톤류는 고옥탄가를 가진 연료 및 연료첨가제로 사용이 가능하였으나 페놀류는 연료로서의 가치가 낮은 것으로 나타났다. 헤미셀룰로오스의 열화학적 전환공정에 의해 생성된 액체 생성물의 발열량은 6680~7170 cal/g이었으며 셀룰로오스의 열분해 액화반응에서 에너지 효율과 질량수율은 $400^{\circ}C$에서 40 min 반응시켰을 때 각각 72.2%, 41.2 g oil/100 g raw material로 가장 좋았다.

Keywords

References

  1. Donald L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, (1998)
  2. Energy Resource Technology Development Center, 'Alternative Energy Development Databook' (1996)
  3. T. B. Reed, Energy from Biomass; 1st E. C. Conference, 11, 496 (1980)
  4. M. Olazar, R. Aguado, and J. Bilbao, Bioresour. Technol., 60, 51 (1997) https://doi.org/10.1016/S0960-8524(96)00170-8
  5. F. A. Agblevor, S. Besler, and A. E. Wieselogel, Energy and Fuels, 9, 635 (1995) https://doi.org/10.1021/ef00052a010
  6. R. P. Overend, T. A. Milne, and L. K. Mudge, Fundamentals of Thermochemical Biomass Conversion, Elsevier Applied Science Publishers, (1985)
  7. D. L. Klass and G. H. Emert, Fuels from Biomass and Waste, Ahn Arbor Science Publisher, inc., (1982)
  8. S.-W. Yoon, J.-J. Lee, and B.-H. Lee, J. Korean Society of Environmental Engineers, 25, 560 (2003)
  9. J.-J. Lee and B.-H. Lee, Trans. of Korean Hydrogen and New Energy Society, 15, 333 (2004)
  10. A. Demirbas, Energy Conversion and Management, 41, 633 (2000) https://doi.org/10.1016/S0196-8904(99)00130-2
  11. A. Demirbas, Energy Conversion and Management, 39, 685 (1998) https://doi.org/10.1016/S0196-8904(97)00047-2
  12. A. Demirbas, Fuel, 77, 1117 (1998) https://doi.org/10.1016/S0016-2361(97)00289-5