Roles of Dopaminergic $D_1\;and\;D_2$ Receptors in Catecholamine Release from the Rat Adrenal Medulla

  • Baek, Young-Joo (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Seo, Yoo-Seong (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2008.02.28

Abstract

The aim of the present study was designed to establish comparatively the inhibitory effects of $D_1$-like and $D_2$-like dopaminergic receptor agonists, SKF81297 and R(-)-TNPA on the release of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused model of the rat adrenal medulla. SKF81297 $(30{\mu}M)$ and R-(-)-TNPA $(30{\mu}M)$ perfused into an adrenal vein for 60 min, produced great inhibition in the CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$, McN-A-343 $(10^{-4}\;M)$, high $K^+$ $(5.6{\times}10^{-2}\;M)$, Bay-K-8644 $(10{\mu}M)$, and cyclopiazonic acid $(10{\mu}M)$, respectively. For the release of CA evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: SKF81297>R-(-)-TNPA. However, R(+)-SCH23390, a selectve $D_1$-like dopaminergic receptor antagonist, and S(-)-raclopride, a selectve $D_2$-like dopaminergic receptor antagonist, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid only for $0{\sim}4$ min. The rank order for the enhancement of CA release evoked by high $K^+$, McN-A-343 and cyclopiazonic acid was R(+)-SCH23390>S(-)-raclopride. Also, the rank order for ACh, DMPP and Bay-K-8644 was S(-)-raclopride > R(+)-SCH23390. Taken together, these results demonstrate that both SKF81297 and R-(-)-TNPA inhibit the CA release evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland without affecting the basal release, respectively, but both R(+)-SCH23390 and S(-)-raclopride facilitate the CA release evoked by them. It seems likely that the inhibitory effects of SKF81297 and R-(-)-TNPA are mediated by the activation of $D_1$-like and $D_2$-like dopaminergic receptors located on the rat adrenomedullary chromaffin cells, respectively, whereas the facilitatory effects of R(+)-SCH23390 and S(-)-raclopride are mediated by the blockade of $D_1$-like and $D_2$-like dopaminergic receptors, respectively: this action is possibly associated with extra- and intracellular calcium mobilization. Based on these results, it is thought that the presence of dopaminergic $D_1$ receptors may play an important role in regulation of the rat adrenomedullary CA secretion, in addition to well-known dopaminergic $D_2$ receptors.

Keywords

References

  1. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333-339, 1990
  2. Albillos A, Abad F, Garcia AG. Cross-talk between $M_2$ muscarinic and $D_1$ dopamine receptors in the cat adrenal medulla. Biochem Biophys Res Commun 183: 1019-1024, 1992 https://doi.org/10.1016/S0006-291X(05)80292-X
  3. Andersen PH, Jansen JA. Dopamine receptor agonists: selectivity and $D_1$ receptor efficacy. Eur J Pharmacol 188: 335-347, 1990 https://doi.org/10.1016/0922-4106(90)90194-3
  4. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  5. Artalejo CR, Ariano MA, Perlman RL, Fox AP. Activation of facilitation calcium channels in chromaffin cells by $D_1$ dopamine receptors through a AMP/protein Kinase A-dependent mechanism. Nature 348: 239-242, 1990 https://doi.org/10.1038/348239a0
  6. Artalejo CR, Dahmer MK, Perlman RL, Fox AP. Two types of $Ca^{2+}$ currents are found in bovine chromaffin cells: facilitation is due to the recruitment of one type. J Physiol 432: 681-707, 1991 https://doi.org/10.1113/jphysiol.1991.sp018406
  7. Artalejo CR, Garcia AG, Montiel C, Sanchez-Garcia P. A dopaminergic receptor modulates catecholamine release from the cat adrenal gland. J Physiol 362: 359-368, 1985 https://doi.org/10.1113/jphysiol.1985.sp015683
  8. Benoit-Marand M, Borrelli E, Gonon F. Inhibition of dopamine release via presynaptic $D_2$ receptors: time course and functional characteristics in vivo. J Neurosci 21: 9134-9141, 2001 https://doi.org/10.1523/JNEUROSCI.21-23-09134.2001
  9. Berridge MJ. Inositol trisphosphate and calcium signaling. Ann NY Acad Sci 766: 31-43, 1995 https://doi.org/10.1111/j.1749-6632.1995.tb26646.x
  10. Bigornia L, Allen CN, Jan CR, Lyon RA, Titeler M, Schneider AS. $D_2$ dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Expt Ther 252: 586-592, 1990
  11. Bigornia L, Suozzo M, Ryan KA, Napp D, Schneider AS. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release. J Neurochem 51: 999-1006, 1988 https://doi.org/10.1111/j.1471-4159.1988.tb03060.x
  12. Challiss RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  13. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cyrosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  14. Chu E, Chu TC, Potter DE. Potential sites of action of TNPA: a dopamine-2 receptor agonist. Exp Eye Res 69: 611-616, 1999 https://doi.org/10.1006/exer.1999.0734
  15. Collet AR, Story DF. Is catecholamine release from the rabbit adrenal gland subject to regulation through dopamine receptors or beta-adrenoceptors? Clin Exp Pharmacol Physiol 9: 436, 1982a
  16. Collet AR, Story DF. Release of $^3H$-adrenaline from an isolated intact preparation of the rabbit adrenal gland: no evidence for release modulatory alpha-adrenoceptors. J Auton Pharmacol 2: 25-34, 1982b https://doi.org/10.1111/j.1474-8673.1982.tb00467.x
  17. Dahmer MK, Senogles SE. Atypical SCH23390 binding sites are present on bovine adrenal medullary membranes. Neurochem Res 25: 321-326, 2000 https://doi.org/10.1023/A:1007569518010
  18. Dahmer MK, Senogles SE. Differential inhibition of secretagogue-stimulated sodium uptake in adrenal chromaffin cells by activation of $D_4$ and $D_5$ dopamine receptors. J Neurochem 67: 1960-1964, 1996 https://doi.org/10.1046/j.1471-4159.1996.67051960.x
  19. Dahmer MK, Senogles SE. Dopaminergic inhibition of catecholamine secretion from chromaffin cells: evidence that inhibition is mediated by $D_4$ and $D_5$ receptors. J Neurochem 66: 222-232, 1996 https://doi.org/10.1046/j.1471-4159.1996.66010222.x
  20. Damase-Michel C, Montastruc JL, Geelen G, Saint-Blanquat GD, Tran MA. Effect of quinpirole a specific dopamine DA2 receptor agonist on the sympathoadrenal system in dogs. J Pharmacol Expt Ther 252: 770-777, 1990
  21. Damase-Michel C, Montastruc JL, Tran MA. Dopaminergic inhibition of catecholamine secretion from adrenal medulla is mediated by $D_2$-like but not $D_1$-like dopamine receptors. Clin Expt Pharmacol Physiol 26(suppl): S67-S68, 1999
  22. Damase-Michel C, Montastruc JL, Tran MA. Effects of dopaminergic drugs on the sympathoadrenal system. Hypertens Res 18(Suppl 1): S119-24, 1995 https://doi.org/10.1291/hypres.18.119
  23. Fasolato C, Innocenti B, Pozzan T. Receptor-activated $Ca^{2+}$ influx: how many mechanisms for how many channels? Trends Pharmacol Sci 15:77-83, 1994 https://doi.org/10.1016/0165-6147(94)90282-8
  24. Foucart S, Lacaille-Belanger P, Kimura T, Nadeau R, De Champlain J. Modulation of adrenal catecholamine release by $D_2$ dopamine receptors in the anaesthetized dog. Clin Exp Pharmacol Physiol 15: 601-611, 1988 https://doi.org/10.1111/j.1440-1681.1988.tb01119.x
  25. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Ihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  26. Gessa L, Canu A, Del Zompo M, Burrai C, Serra G. Lack of acute antipsychotic effect of SCH23390, a selective dopamine $D_1$ receptor antagonist. Lancet 337: 854-855, 1991
  27. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995-4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  28. Gonzales MC, Artalejo AR, Montiel C, Hervas PP, Garcia AG. Characterization of a dopaminergic receptor that modulates adrenomedullary catecholamine release. J Neurochem 47: 382-388, 1986 https://doi.org/10.1111/j.1471-4159.1986.tb04513.x
  29. Hammer R, Giachetti A. Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci 31: 2992-2998, 1982
  30. Huettl P, Gerhardt GA, Browning MD, Masserano JM. Effects of dopamine receptor agonists and antagonists on catecholamine release in bovine chromaffin cells. J Pharmacol Expt Ther 257: 567-574, 1991
  31. Kujacic M, Carlsson A. Evidence for an increased catecholamine synthesis in rat adrenal glands following stimulation of peripheral dopamine receptors. J Neural Transm Gen Sect 92: 73-79, 1993 https://doi.org/10.1007/BF01244867
  32. Kujacic M, Carlsson A. In vivo activity of tyrosine hydroxylase in rat adrenal glands following administration of quinpirole and dopamine. Eur J Pharmacol 278: 9-15, 1995 https://doi.org/10.1016/0014-2999(95)00092-Y
  33. Kujacic M, Svensson K, Lofberg L, Carlsson A. Acute changes in dopamine levels in rat adrenal gland after administration of dopamine receptor agonists and antagonists. Eur J Pharmacol 177: 163-170, 1990 https://doi.org/10.1016/0014-2999(90)90266-9
  34. Kujacic M, Svensson K, Lofberg L, Carlsson A. Dopamine receptors, controlling dopamine levels in rat adrenal glands-comparison with central dopaminergic autoreceptors. J Neural Transm Gen Sect 84: 195-209, 1991 https://doi.org/10.1007/BF01244970
  35. Lewis MM, Watts VJ, Lawler P, Nichols E, Mailman RB. Homologous desensitization of the $D_1A$ dopamine receptor: efficacy in causing desensitization dissociates from both receptor occupancy and functional potency. J Pharmacol Exp Ther 286: 345-353, 1998
  36. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27: 53-67, 1991
  37. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115-125, 1992 https://doi.org/10.1007/BF02974085
  38. Lim DY, Kim KH, Choi CH, Yoo HJ, Choi DJ, Lee EH. Studies on secretion of catecholamines evoked by metolclopramide of the rat adrenal gland. Korean J Pharmacol 25: 31-42, 1989
  39. Lim DY, Yoon JK, Moon B. Interrelationship between dopaminergic receptors and catecholamine secretion from the rat adrenal gland. Korean J Pharmacol 30: 87-100, 1994
  40. Lyon RA, Titeler M, Bigornia L, Schneider AS. $D_2$ dopamine receptors on bovine chromaffin cell membranes: identification and characterization by $[^3H]$ N-methylspiperone binding. J Neurochem 48: 631-635, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04139.x
  41. Mannelli M, Lanzillotti R, Ianni L, Pupilli C, Serio M. Dopaminergic modulation of human adrenal medulla: indirect evidence for the involvement of DA-2 receptors located on chromaffin cells. J Auton Pharmacol 10 Suppl 1: 79-84, 1990
  42. Mannelli M, Pupilli C, Fabbri G, Musante R, De Feo ML, Franchi F, Guisti G. Endogenous dopamine (DA) and DA2 receptors: a mechanism limiting excessive sympatheticadrenal discharge in humans. J Clin Endocrinol Metab 66: 626-631, 1988 https://doi.org/10.1210/jcem-66-3-626
  43. Mercuro G, Gessa G, Rivano CA, Lai L, Cherchi A. Evidence for a dopaminergic control of sympathoadrenal catecholamine release. Am J Cardiol 62(10 Pt 1): 827-828, 1988 https://doi.org/10.1016/0002-9149(88)91236-2
  44. Montastruc JL, Gaillard G, Rascol O, Tran MA, Montastruc P. Effect of apomorphine on adrenal medullary catecholamine levels. Fundam Clin Pharmacol 3: 665-670, 1989 https://doi.org/10.1111/j.1472-8206.1989.tb00467.x
  45. Montiel C, Artalejo AR, Bermejo PM, Sanchez-Garcia P. A dopaminergic receptor in adrenal medulla as a possible site of action for the droperidol-evoked hypertensive response. Anesthesiology 65: 474-479, 1986 https://doi.org/10.1097/00000542-198609001-00472
  46. Nagahama S, Chen YF, Lindheimer MD, Oparil S. Mechanism of the pressor action of LY171555, a specific dopamine $D_2$ receptor agonist, in the conscious rat. J Pharmacol Exp Ther 236: 735-742, 1986
  47. O'Boyle KM, Gaitanopoulos DE, Brenner M, Waddington JL. Agonist and antagonist properties of benzazepine and thienopyrine derivates at the $D_1$ dopamine receptor. Neuropharmacol 28: 401-405, 1989 https://doi.org/10.1016/0028-3908(89)90036-1
  48. Quick M, Bergeron L, Mount H, Philte J. Dopamine $D_2$ receptor binding in adrenal medulla: charadcterization using $[^3H]$ spiperone. Biochem Pharmacol 36: 3707-3713, 1987 https://doi.org/10.1016/0006-2952(87)90024-4
  49. Regunathan S, Missala K, Sourkes TL. Central regulation of adrenal tyrosine hydroxylase: effect of induction on catecholamine levels in the adrenal medulla and plasma. J Neurochem 53: 1706-1710, 1989 https://doi.org/10.1111/j.1471-4159.1989.tb09234.x
  50. Schoors DF, Vauquelin GP, De Vos H, Smets G, Velkeniers B, Vanhaelst L, Dupont AG. Identification of a $D_1$ dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br J Pharmacol 103: 1928-1934, 1991 https://doi.org/10.1111/j.1476-5381.1991.tb12354.x
  51. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303: 535-537, 1982 https://doi.org/10.1038/303535a0
  52. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  53. Starke K. Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78: 685-693, 2001 https://doi.org/10.1046/j.1471-4159.2001.00484.x
  54. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  55. Takemura H, Hughes AR, Thastrup O, Putney JW Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264: 12266-12271, 1989
  56. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  57. Villanueva M, Wightman RM. Facilitation of quantal release induced by a $D_1$-like receptor on bovine chromaffin cells. Biochem 46: 3881-3887, 2007 https://doi.org/10.1021/bi602661p
  58. Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N. Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medulla cells. Neuroscience 15: 283-292, 1985 https://doi.org/10.1016/0306-4522(85)90135-6
  59. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676