Absorption of CO2 Using Mixed Aqueous Solution of N-methyldiethanolamine with Piperazine for Pre-combustion CO2 Capture

연소전 이산화탄소 포집을 위한 N-methyldiethanolamine과 Piperazine 혼합 수용액의 이산화탄소 흡수

  • Jang, Won Jin (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Research Center, Korea Institute of Energy Research) ;
  • Park, Sang Do (Carbon Dioxide Reduction & Sequestration R&D Center, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Bio-Applied Chemistry, Chungnam National University) ;
  • Baek, Il Hyun (Greenhouse Gas Research Center, Korea Institute of Energy Research)
  • 장원진 (한국에너지기술연구원 온실가스연구센터) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구센터) ;
  • 박상도 (한국에너지기술연구원 이산화탄소저감및처리사업단) ;
  • 이영우 (충남대학교 바이오응용화학부) ;
  • 백일현 (한국에너지기술연구원 온실가스연구센터)
  • Received : 2008.09.07
  • Accepted : 2008.10.28
  • Published : 2008.12.10

Abstract

In this study, the new solubility data at high pressure condition applicable to pre-combustion $CO_2$ capture system were found. Experiments were conducted within the temperature range of $40{\sim}80^{\circ}C$ while increasing the pressure from 0 to 50 bar. The effect of MDEA (N-methyldiethanolamine) concentration was studied by varying the concentration from 30 to 50 wt%. In order to improve the absorption rate of MDEA, piperazine was added in ranging of 5~10 wt% into the MDEA solution as a activator. From this experiment, the equilibrium partial pressure was increased with increasing MDEA concentration in absorbent and reaction temperature. Also absorption rate was increased with increasing the reaction temperature. It was noted that the mixture of piperazine and MDEA aqueous solution showed faster absorption rate by 2.5 times than only the MDEA aqueous solution with 40 wt% cencentration at initial reaction stage and also increased absorption capacity by 16%.

본 연구에서는 30, 40, 50 wt% MDEA (N-methyldiethanolamine) 수용액을 이용하여 0~50 bar, $40{\sim}80^{\circ}C$의 조업조건에서 이산화탄소 흡수평형실험을 수행하여 연소전 이산화탄소 포집에 적용 가능한 고압조건에 대한 정보를 알고자 하였다. 또한 MDEA의 반응 속도를 증가시키기 위하여 piperazine 5.0~10.0 wt%를 첨가한 후 이산화탄소 흡수실험을 수행하였다. 그 결과 수용액 상 MDEA의 농도, 반응 온도가 증가함에 따라 평형 압력이 증가하였으며 반응온도가 높을수록 흡수속도가 증가하였다. Piperazine을 첨가한 MDEA 수용액은 MDEA 40 wt% 단독 흡수제에 비해 초기 반응에서 2.5배에 가까운 반응속도와 16% 가량 증대된 흡수능을 보였다.

Keywords

References

  1. C. M. White, R. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, J. Air Waste Manage. Assoc., 53, 645 (2003). https://doi.org/10.1080/10473289.2003.10466206
  2. H. K. Park, H. J. Park, and B. S. Kang, DCER Techinfo part I, 3, 100 (2004)
  3. I. H. Lee, S. I. Kim, and J. Y. Park, Ind. Chem., 18, 239 (2007).
  4. H. D. Hwang, H. Y. Shin, H. H. Kwak, and S. Y. Bae, Korean Chem. Eng. Res., 44, 588 (2006).
  5. I. H. Beak, Korea Institute of Energy Research (KIER), KIER-973406 (1997).
  6. P. Chiesa and S. Consonni, J. Eng. Gas Turbines Power, 121, 295 (1999). https://doi.org/10.1115/1.2817120
  7. R. Pruschek, G. Oeljeklaus, V. Brand, G. Haupt, G. Zimmermann, and J. S. Ribberink, Energy Conversion and Management, 36, 797 (1995). https://doi.org/10.1016/0196-8904(95)00124-V
  8. G. Ordorica-Garcia, P. Douglas, E. Croiset, and L. Zheng, Energy Conversion and Management, 47, 2250 (2006). https://doi.org/10.1016/j.enconman.2005.11.020
  9. M. Aineto, A. Acosta, J. Ma. Rincon, and M. Romero, Fuel, 85, 2352 (2006). https://doi.org/10.1016/j.fuel.2006.05.015
  10. 2005 IPCC Special Report on Carbon Dioxide Capture and Storage, available on http://www.ipcc.ch.
  11. D. Heaven, J. Mak, D. Kubek, M. Clark, and C. Sharp, Gasification Technologies Conference, Washington D.C, USA (2004).
  12. U. S. Department of Energy, National Energy Technology Laboratory 3rd Annual Conference, Alexandria, Virginia (2004)
  13. M. Kanniche and C. Bouallou, Applied Thermal Engineering, 27, 2693 (2007). https://doi.org/10.1016/j.applthermaleng.2007.04.007
  14. U. S. Patent 4, 336, 233 (1982).
  15. S. Bishnoi and G. T. Rochelle, AIChE Journal, 48, (2002). https://doi.org/10.1002/aic.690480102
  16. G.-W. Xu, C.-F. Zhang, S.-J. Qin, and Y.-W. Wang, Ind. Eng. Chem. Res., 31, 921 (1992). https://doi.org/10.1021/ie00003a038
  17. X. Zhang, C.-F. Zhang, G.-W. Xu, W.-H. Gao, and Y.-Q. Wu, Ind. Eng. Chem. Res., 40, 898 (2001). https://doi.org/10.1021/ie000055+
  18. X. Zhang, J. Wang, C.-F. Zhang, Y.-H. Yang, and J.-J. Xu, Ind. Eng. Chem. Res., 42, 118 (2003). https://doi.org/10.1021/ie020223t
  19. D. M. Austgen, G. T. Rochelle, and C. C. Chen, Ind. Eng. Chem. Res., 30, 543 (1991). https://doi.org/10.1021/ie00051a016
  20. H. Liu, G. Xu, C. Zhan, and Y. Wu, J. East China Univ. Sci. Technol., 25, 242 (1999).
  21. F. Y. Jou, J. J. Carroll, A. E. Mather, and F. D. Otto, Can. J. Chem. Eng., 71, 264 (1993). https://doi.org/10.1002/cjce.5450710213
  22. B. Lemoine, Y.-F. Li, R. Cadours, C. Bouallou, and D. Richon, Fluid Phase Equilib., 172, 261 (2000). https://doi.org/10.1016/S0378-3812(00)00383-6
  23. M. K. Park and O. C. Sandall, J. Chem. Eng. Data, 46, 166 (2001). https://doi.org/10.1021/je000190t
  24. S.-W. Rho, K.-P. Yoo, J. S. Lee, S. C. Nam, J. E. Son, and B.-M. Min, J. Chem. Eng. Data, 42, 1161 (1997). https://doi.org/10.1021/je970097d
  25. W. J Rogers, J. A. Bullin, and R. R. Davison, AIChE J., 44, 2423 (1998). https://doi.org/10.1002/aic.690441110
  26. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, J. Chem. Eng. Chin. Univ., 44, 677 (1993).
  27. G.-W. Xu, C.-F. Zhang, and S.-J. Qin, W.-H. Gao, H.-B. Liu, Ind. Eng. Chem. Res., 37, 1473 (1998). https://doi.org/10.1021/ie9506328
  28. S. H. Huang and H. J. Ng, GPA Rearch Report, RR-155, 8 (1998).
  29. P. J. G. Huttenhuis, N. J. Agrawal, J. A. Hogendoorn, and G. F. Versteeg, Journal of Petroleum Science and Engineering, 55, 122 (2007). https://doi.org/10.1016/j.petrol.2006.04.018
  30. C. Mathonat, V. Majer, A. E. Mather, and J.-P. E. Grolier, Fluid Phase Equilibria, 140, 171 (1997). https://doi.org/10.1016/S0378-3812(97)00182-9
  31. B. M. Min, Korea Institute of Energy Rearchb (KIER), KIER-943117 (1995)
  32. Y. W. Wang, M.S. Thesis, East China University of Chemical Technology (1998).
  33. D. J. Seo and W. H. Hong, Korean J. Chem. Eng., 37, 593 (1999).
  34. T. Vall and R. Veldman, CEP, 67 (1991).
  35. R. M. Davidson, Asia Clean Energy Forum, Manila (2007).
  36. P. H. M. Feron, International Test Network for CO2 Capture: report in 3rd workshop, Apeldoorn, Netherlands (2002).