Characteristics of EVA-Polymer Modified Mortars Recycling Rapid-chilled Steel Slag Fine Aggregate

급냉 제강슬래그를 재활용한 EVA-폴리머 시멘트 모르타르의 특성

  • Hwang, Eui-Hwan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Man (Department of Architectural Engineering, Kongju National University)
  • Received : 2008.09.08
  • Accepted : 2008.09.29
  • Published : 2008.12.10

Abstract

For the recycling of rapid-chilled steel slag, the mechanical strengths and physical properties of EVA-polymer modified mortars with the various replacement ratios of rapid-chilled steel slag were investigated. Twenty five specimens of polymer modified mortars were prepared with the five different amounts of EVA-polymer modifier (0, 5, 10, 15, 20 wt%) and rapid-chilled steel slag (0, 25, 50, 75, 100 wt%). For the investigation of the characteristics of polymer modified mortars, the measurements such as water-cement ratio, unit volume weight, air content for fresh mortar and compressive strength, flexural strength, water absorption, hot water resistance, porosity and SEM investigation for curing specimens were conducted. As a results, with an increase in the replacement ratio of rapid-chilled steel slag, water-cement ratios decreased but unit volume weight increased remarkably. With increasing EVA-polymer modifier and the replacement ratio of rapid-chilled steel slag, percent of water absorption decreased but compressive and flexural strengths increased remarkably. By the hot water resistance test, mechanical strengths decreased but total pore volume and porosity increased remarkably. In the SEM observation, the components of specimen were shown to stick to each other in the form of co-matrix phase before hot water resistance test, but polymer modifier of co-matrix phase was decomposed or deteriorated after hot water resistance test.

급냉 제강슬래그를 재활용하기 위하여 제강슬래그의 치환율을 다양하게 변화시켜 만든 EVA-폴리머 시멘트 모르타르의 기계적강도와 물성에 대하여 조사하였다. EVA-폴리머 시멘트 모르타르 공시체는 폴리머-시멘트비를 5단계(0, 5, 10, 15, 20 wt%), 급냉 제강슬래그의 치환율을 5단계(0, 25, 50, 75, 100 wt%)로 각각 변화시켜 총 25 종류의 공시체를 제작하였다. 공시체의 제 성능을 조사하기 위하여 후레쉬 모르타르의 물-시멘트비, 단위용적중량, 공기량과 경화 공시체의 압축 및 휨강도, 흡수시험, 내열수성시험, 세공분포측정 및 SEM에 의한 미세조직 관찰 등을 실시하였다. 그 결과 급냉 제강슬래그의 치환율이 증가됨에 따라 물-시멘트비는 감소되었으나 단위용적중량은 현저히 증가 되었다. 폴리머-혼화제 및 급냉 제강슬래그의 첨가량 증가에 따라 흡수율은 감소되었으나, 압축 및 휨강도는 현저히 증가되었다. 내열수성시험에 의하여 기계적강도는 현저히 감소되었으나, 세공량과 공극률은 현저히 증가되었다. 전자현미경 관찰에서 내열수시험 전의 조직은 견고하게 융착되어 있었으나 내열수시험 후의 조직에서는 폴리머-혼화제가 분해 또는 열화되어 있는 것을 관찰할 수 있었다.

Keywords

References

  1. E. H. Hwang and T. S. Hwang, J. of Ind. Eng. Chem., 13, 585 (2007).
  2. J. M. Kim, S. H. Cho, K. J. Kwon, and M. H. Kim, J. of Archi. Institute of Korea, 21, 121 (2005).
  3. E. H. Hwang, Y. S. Ko, and J. K. Jeon, J. of Ind. Eng. Chem., 13, 387 (2007).
  4. Y. Ohama, 12th Int. Cong. on Polymers in Concrete, Kyu-Seok Yeon Ed., 12, 37, Chuncheon, Korea (2007).
  5. E. H. Hwang, D. S. Kil, and T. S. Hwang, J. Korean Ind. Eng. Chem., 11, 792 (2000).
  6. D. W. Fowler and T. U. Taylor, 6th Int. Cong. on Polymers in Concrete, Huang Yiun-Yuan, Wu Keru, and Chen Zhiyuan Eds. 6, 10 Shanghai, China (1990).
  7. E. H. Hwang, T. S. Hwang, and D. S. Kil, J. Korean Ind. Eng. Chem., 10, 1066 (1999).
  8. E. H. Hwang, D. S. Kil, and I. S. Oh, J. Korean Ind. Eng. Chem., 8, 979 (1997).
  9. Y. Ohama, 5th Asian symp. on Polymers in Concrete, N. Laksmanan, C. V. Vaidyanathan, Y. Ohama, and M. Neelamegam Eds., 3, Chennai, India (2006).
  10. K. S. Yeon, 5th Asian symp. on Polymers in Concrete, N. Laksmanan, C. V. Vaidyanathan, Y. Ohama, and M. Neelamegam Eds., 13, Chennai, India (2006).
  11. Y. Ohama and K. Shiroishida, SP-89, American Concrete Institute, 313 (1985).
  12. Y. Ohama, 9th Int. cong. on Polymers in Concrete, Franco Sandrolini Ed., 9, 1, Bologna, Italy (1998).
  13. D. W. Fowler and G. W. Depuy, 8th Int. cong. on. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 8, 67, Oostende, Belgium (1995).
  14. R. N. Swamy, 8th Int. cong. on. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 8, 21, Oostende, Belgium (1995).
  15. E. H. Hwang, T. S. Hwang, and Y. Ohama, J. Korean Ind. Eng. Chem., 5, 786 (1994).
  16. E. H. Hwang, T. S. Hwang, and Eiji Kamada, J. of the Korean Ceramic Society, 31, 949 (1994).
  17. D. W. Fowler, 8th Int. cong. on. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 8, 13, Oostende, Belgium (1995).
  18. V. V. Paturoev and V. P. Trambovetsky, 8th Int., cong. on. Polymers in Concrete, D. Van Gemert and K. U. Leuven Eds., 8, 451, Oostende, Belgium (1995).
  19. Y. Ohama, M. Demura, and M. Komiyama, J. of the Society of Materials Science, 29, 266 (1980). https://doi.org/10.2472/jsms.29.266
  20. P. Mani, A. K. Gupta, and S. Krishnamoorthy, Int. J. of Adhesion and Adhesives, 7, 157 (1987). https://doi.org/10.1016/0143-7496(87)90071-6
  21. E. H. Hwang, J. J. Choi, and T. S. Hwang, J. Korean Ind. Eng. Chem., 16, 317 (2005).
  22. T. Satoh, Y. Ohama, and K. Demura, Summary of Technical Papers of Architectural Institute of Japan, 137 (1994).