DOI QR코드

DOI QR Code

Computational Study on the Energy Separation of the Vortex Tube for CO2 Reduction

CO2 흡수용 20Nm3/hr급 Vortex tube의 에너지 분리 현상에 관한 해석적 연구

  • Kim, Chang-Su (Div. of Automotive & Mechanical Engineering, Kongju National University) ;
  • Jung, Young-Chul (Div. of Automotive & Mechanical Engineering, Kongju National University) ;
  • Han, Keun-Hee (Korea Institute of Energy Research) ;
  • Park, Sung-Young (Div. of Automotive & Mechanical Engineering, Kongju National University)
  • 김창수 (공주대학교 기계자동차공학부) ;
  • 정영철 (공주대학교 기계자동차공학부) ;
  • 한근희 (한국에너지기술연구원) ;
  • 박성영 (공주대학교 기계자동차공학부)
  • Published : 2009.04.30

Abstract

Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold flow. In this study, computational approach has been performed to analyze the characteristics of the vortex tube. Energy separation characteristics of the vortex tube has been tested for various geometric design parameters. For the given conditions, it is found that as the tube is lengthened, hot end temperature is reduced but cold end temperature does not influenced much. As the orifice diameter decreases, cold end temperature decreases. Also, as hot gas fraction increases, hot end temperature decreases. The results from this study can be used for the basic design parameter of the $CO_2$ reduction device.

고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용 할 수 있는 장치인 볼텍스 튜브의 에너지 분리 특성을 적용하여 $CO_2$ 흡수를 위한 장치설계의 기본 설계 자료를 구축하기 위하여 전산유체 해석을 수행하였다. 설계를 위한 기초 자료를 확보하기 위하여, 볼텍스 튜브의 길이, 볼텍스 발생기의 오리피스 직경 및 고온 측과 저온 측의 유량비등이 볼텍스 튜브의 성능에 미치는 영향을 분석하였다. 튜브의 길이가 길어짐에 따라 고온 출구측의 온도는 감소하지만, 저온 출구측의 온도에 미치는 영향은 미미하였다. 볼텍스 발생기의 오리피스 직경이 축소됨에 따라 저온측 온도는 강하하나 고온측 온도의 변화는 미미하였다. 고온 유량비가 증가함에 따라 고온 출구 쪽의 온도가 강하하였다. 본 연구의 결과는 $CO_2$ 흡수 장치의 기본 설계 자료로 응용될 수 있을 것이다.

Keywords

References

  1. S. Eiamsa and P. Promvonge, "Review of Ranque-Hilsch Effect In Vortex Tube" Renewable & Sustainable Energy Reviews 12, pp.1822-1842, 2008. https://doi.org/10.1016/j.rser.2007.03.006
  2. R. Hilsch, "The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process" The Review of Scientific Instruments, Vol 18, No. 2, pp.108-113, 1947. https://doi.org/10.1063/1.1740893
  3. B. Ahlborn and J. Gordon, "The Vortex Tube as a Classic Thermodynamic Refrigeration Cycle" Journal of Applied Physics Vol. 88, No. 6, pp. 3645-3653, 2000. https://doi.org/10.1063/1.1289524
  4. J. Lewins and A. Bejan, "Vortex Tube Optimization Theory" Energy 24, pp. 931-943, 1999. https://doi.org/10.1016/S0360-5442(99)00039-0
  5. S. Piralishvili and A. Fuzeeva, "Similarity of the Energy-Separation Process in Vortex Ranque Tube" Journal of Engineering Physics and Thermodynamics, Vol. 79, No. 1, pp. 27-32, 2006. https://doi.org/10.1007/s10891-006-0062-9
  6. M. Saidi and M. Allaf Yazdi, "Energy Model of a Vortex Tube System with Experimental Reslts" Energy 24, pp.625-632, 1999. https://doi.org/10.1016/S0360-5442(98)00076-0
  7. B. Ahlborn and S. Groves, "Secondary Flow in a Vortex Tube" Fluid Dynamics Research 21, pp.73-86, 1997. https://doi.org/10.1016/S0169-5983(97)00003-8
  8. K. Dincer, S. Baskaya, B. Uysal and I. Ucgul, "Experimental Investigation of the Performance of a Ranque-Hilsch Vortex Tube with regard to a Plug Located as the Hot Gas" International Journal of Refrigeration 32, pp.87-94, 2009. https://doi.org/10.1016/j.ijrefrig.2008.06.002
  9. W. Peng, A. Hoffmann, H. Dries, M. Regelink and L. Stein, "Experimental Study of the Vortex End in Centrifugal Separator: The Nature of the Vortex End" Chemical Engineering Science 60, pp.6919-6928, 2005 https://doi.org/10.1016/j.ces.2005.06.009
  10. O. Aydin and M. Baki, "An Experimental Study on the Design Paramenters of a Counterflow Vortex Tube" Energy 31, pp.2763-2772, 2006. https://doi.org/10.1016/j.energy.2005.11.017
  11. X. Li, H. Yan, J. Meng and Z. Li, "Visualization of Longitudinal Vortex Flow in an Enhanced Heat Transfer Tube" Experimental Thermal and Fluid Science 31, pp.601-608, 2007. https://doi.org/10.1016/j.expthermflusci.2006.06.007
  12. H.M. Skye, G.F. Nellis, S.A. Klein "Comparison of CFD analysis to empirical data in a commercial vortex tube" International Journal of Refrigeration 29, pp.71-80, 2006. https://doi.org/10.1016/j.ijrefrig.2005.05.004
  13. U. Behera, P.J. Paul, S. Kasthurirengan, R. Karunanithi, S.N. Ram, K. Dinesh, S. Jacob(2005), "CFD analysis and experimental investigations towards optimizing the parameters of Ranque-Hilsch vortex tube" International Journal of Heat and Mass Transfer 48, pp.1961-1973, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.046
  14. S. Eiamsa-ard and P. Promvonge, "Numerical Investigation of the Thermal Separation m a Ranque-Hilsch Vortex Tube" International Journal of Heat and Mass Transfer 50, pp.821-832, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.018
  15. T. Farouk and B. Farouk, "Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque-Hilsch Vortex Tube" International Journal of Heat and Mass Transfer 50, pp.4724-4735, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.048
  16. NIKA GmbH, "COSMOS-FloWorks User's Manual", 2007.